Abstract

We present the concept and experimental results for Spectral LADAR, an augmented LADAR imager combining three-dimensional (3D) time-of-flight ranging with active multispectral sensing in the shortwave infrared (1080–1620 nm). The demonstrated technique is based on a nanosecond regime pulsed supercontinuum transmitter and spectrally multiplexed receiver that computes a high-resolution range value for each of 25 spectral bands. A low frame-rate prototype unit is described. Results demonstrating 3D imaging and material type classification of objects, especially those obscured by camouflage, are shown at effective stand-off ranges exceeding 40 m. These capabilities and the highly eye safe wavelengths at which the system operates make it suitable for applications in military imaging and robotic perception.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. W. Schilling, D. N. Barr, G. C. Templeton, L. J. Mizerka, and C. W. Trussell, “Multiple-return laser radar for three-dimensional imaging through obscurants,” Appl. Opt. 41, 2791–2799 (2002).
    [CrossRef]
  2. C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
    [CrossRef]
  3. J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
    [CrossRef]
  4. A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).
  5. M. Hebert, “Active and passive range sensing for robotics,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation (IEEE, 2000), pp. 102–110.
  6. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
    [CrossRef]
  7. K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.
  8. I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
    [CrossRef]
  9. R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).
  10. L. Bokobza, “Origin of near-infrared absorption bands,” in Near Infrared Spectroscopy: Principles, Instruments, Applications, H. W. Seisler, ed. (Wiley-VCH, 2002), pp. 12–16.
  11. E. W. Ciurczak, “Principles of near-infrared spectroscopy,” in Handbook of Near-Infrared Analysis, 2nd ed., D. A. Burns and E. W. Ciurczak, eds. (Dekker, 2001), pp. 7–19.
  12. M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).
  13. M. Alouini, F. Goudail, A. Grisard, J. Bourderionnet, D. Dolfi, A. Bénière, I. Baarstad, T. Løke, P. Kaspersen, X. Normandin, and G. Berginc, “Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection,” Appl. Opt. 48, 1610–1618 (2009).
    [CrossRef]
  14. J. F. Andersen, J. Busck, and H. Heiselberg, “Pulsed Raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).
    [CrossRef]
  15. B. R. Foy, B. D. McVey, R. R. Petrin, J. J. Tiee, and C. W. Wilson, “Remote mapping of vegetation and geological features by LIDAR in the 9–11 µm region,” Appl. Opt. 40, 4344–4352 (2001).
    [CrossRef]
  16. M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
    [CrossRef]
  17. R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
    [CrossRef]
  18. A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple-slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
    [CrossRef]
  19. A. M. Wallace, G. S. Buller, R. C. W. Sung, R. D. Harkins, A. McCarthy, S. Hernandez-Marin, G. J. Gibson, and R. Lamb, “Multi-spectral laser detection and ranging for range profiling and surface characterization,” J. Opt. A 7, S438–S444 (2005).
    [CrossRef]
  20. Y. Wang, Y. Wang, and H. Q. Le, “Multi-spectral mid-infrared laser stand-off imaging,” Opt. Express 13, 6572–6586(2005).
    [CrossRef]
  21. B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
    [CrossRef]
  22. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  23. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibers,” Opt. Express 12, 299–309 (2004).
    [CrossRef]
  24. J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
    [CrossRef]
  25. J. Busck, and H. Heiselberg, “Gated viewing and high-accuracy three-dimensional laser radar,” Appl. Opt. 43, 4705–4710 (2004).
    [CrossRef]
  26. C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
    [CrossRef]
  27. Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, “Broadband time-domain absorption spectroscopy with a ns-pulse supercontinuum source,” Opt. Express 18, 22762–22771 (2010).
    [CrossRef]
  28. K.-S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
    [CrossRef]
  29. M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011).
    [CrossRef]
  30. R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed. (Academic, 2007).
  31. J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed. (Springer, 2006).
  32. M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

2011 (2)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011).
[CrossRef]

2010 (2)

2009 (2)

2006 (3)

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. F. Andersen, J. Busck, and H. Heiselberg, “Pulsed Raman fiber laser and multispectral imaging in three dimensions,” Appl. Opt. 45, 6198–6204 (2006).
[CrossRef]

2005 (2)

Y. Wang, Y. Wang, and H. Q. Le, “Multi-spectral mid-infrared laser stand-off imaging,” Opt. Express 13, 6572–6586(2005).
[CrossRef]

A. M. Wallace, G. S. Buller, R. C. W. Sung, R. D. Harkins, A. McCarthy, S. Hernandez-Marin, G. J. Gibson, and R. Lamb, “Multi-spectral laser detection and ranging for range profiling and surface characterization,” J. Opt. A 7, S438–S444 (2005).
[CrossRef]

2004 (3)

2003 (2)

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

2002 (1)

2001 (2)

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple-slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

B. R. Foy, B. D. McVey, R. R. Petrin, J. J. Tiee, and C. W. Wilson, “Remote mapping of vegetation and geological features by LIDAR in the 9–11 µm region,” Appl. Opt. 40, 4344–4352 (2001).
[CrossRef]

1998 (2)

R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
[CrossRef]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

1997 (1)

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

1996 (1)

C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[CrossRef]

1976 (1)

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Alouini, M.

Andersen, J. F.

Anderson, R.

R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Baarstad, I.

Barr, D. N.

Beck, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Beck, J. D.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Bénière, A.

Berginc, G.

Berzina, A.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Biancalana, F.

Birks, T. A.

Bokobza, L.

L. Bokobza, “Origin of near-infrared absorption bands,” in Near Infrared Spectroscopy: Principles, Instruments, Applications, H. W. Seisler, ed. (Wiley-VCH, 2002), pp. 12–16.

Bourderionnet, J.

Burton, K.

K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.

Busck, J.

Campbell, J. C.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Carmer, C.

C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[CrossRef]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Ciurczak, E. W.

E. W. Ciurczak, “Principles of near-infrared spectroscopy,” in Handbook of Near-Infrared Analysis, 2nd ed., D. A. Burns and E. W. Ciurczak, eds. (Dekker, 2001), pp. 7–19.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Coldren, L. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Davis, C. C.

M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011).
[CrossRef]

Decobert, J.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Demiguel, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Dereniak, E. L.

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

Diebele, I.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Dolfi, D.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Engelbrecht, R.

Farkas, D. L.

K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Foy, B. R.

Garcia, J. P.

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Goudail, F.

Grayson, T. P.

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Grisard, A.

Guo, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Habbit, R. D.

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

Hardie, R. C.

R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
[CrossRef]

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

Hebert, M.

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

M. Hebert, “Active and passive range sensing for robotics,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation (IEEE, 2000), pp. 102–110.

Heiselberg, H.

Huber, D. F.

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

Huertas, A.

A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).

Huntington, A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Jakovels, D.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Jeong, J.

K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.

Jia, X.

J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed. (Springer, 2006).

Joly, N.

Joseph, R. M.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Kapostinsh, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Kaspersen, P.

Kerekes, J. P.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Kinch, M. A.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Kinder, B. A.

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

Knight, J. C.

Kozlov, D.

Kuzmina, I.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Lalonde, J.-F.

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

Le, H. Q.

Lee, K.-S.

Leipertz, A.

Li, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Libby, J. C.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Lin, C.

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Løke, T.

Ma, F.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Malila, W.

R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).

Matthies, L. H.

A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).

Maxwell, R.

R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).

McManamon, P. F.

R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
[CrossRef]

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

McVey, B. D.

Mizerka, L. J.

Myers, L. E.

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

Nischan, M. L.

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Normandin, X.

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Peterson, L. M.

C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[CrossRef]

Petrin, R. R.

Powers, M. A.

M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011).
[CrossRef]

Rankin, A. L.

A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).

Reed, L.

R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).

Richards, J. A.

J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed. (Springer, 2006).

Rolland, J. P.

Russell, P. St. J.

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Schilling, B. W.

Schmauss, B.

Schowengerdt, R. A.

R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed. (Academic, 2007).

Seeger, T.

Skolnik, M. I.

M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Spigulis, J.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Stolen, R.

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

Sych, Y.

Templeton, G. C.

Thompson, K. P.

Tiee, J. J.

Trussell, C. W.

Tscherptner, N.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Vaidyanathan, M.

R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
[CrossRef]

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

Valeine, L.

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

Vandapel, N.

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

Wachsmann-Hogiu, S.

K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.

Wadsworth, W. J.

Wang, S.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Wang, Y.

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Wilson, C. W.

Zheng, X.

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

C. Lin and R. Stolen, “New nanosecond continuum for excited-state spectroscopy,” Appl. Phys. Lett. 28, 216–218 (1976).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X. Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren, J. Decobert, and N. Tscherptner, “Recent advances in avalanche photodiodes,” IEEE J. Quantum Electron. 10, 777–787 (2004).
[CrossRef]

J. Biomed. Opt. (1)

I. Kuzmina, I. Diebele, D. Jakovels, J. Spigulis, L. Valeine, J. Kapostinsh, and A. Berzina, “Towards noncontact skin melanoma selection by multispectral imaging analysis,” J. Biomed. Opt. 16, 060502 (2011).
[CrossRef]

J. Field Robot. (1)

J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain classification using three-dimensional ladar data for ground robot mobility,” J. Field Robot. 23, 839–861 (2006).
[CrossRef]

J. Opt. A (1)

A. M. Wallace, G. S. Buller, R. C. W. Sung, R. D. Harkins, A. McCarthy, S. Hernandez-Marin, G. J. Gibson, and R. Lamb, “Multi-spectral laser detection and ranging for range profiling and surface characterization,” J. Opt. A 7, S438–S444 (2005).
[CrossRef]

Lincoln Lab. J. (1)

M. L. Nischan, R. M. Joseph, J. C. Libby, and J. P. Kerekes, “Active spectral imaging,” Lincoln Lab. J. 14, 131–144 (2003).

Opt. Eng. (1)

R. C. Hardie, M. Vaidyanathan, and P. F. McManamon, “Spectral band selection and classifier design for a multispectral imaging laser radar,” Opt. Eng. 37, 752–762 (1998).
[CrossRef]

Opt. Express (4)

Proc. IEEE (1)

C. Carmer and L. M. Peterson, “Laser radar in robotics,” Proc. IEEE 84, 299–320 (1996).
[CrossRef]

Proc. SPIE (5)

B. A. Kinder, J. P. Garcia, R. D. Habbit, and E. L. Dereniak, “Ranging-imaging spectrometer,” Proc. SPIE 5159, 73–81 (2003).
[CrossRef]

A. D. Gleckler, A. Gelbart, and J. M. Bowden, “Multispectral and hyperspectral 3D imaging lidar based upon the multiple-slit streak tube imaging lidar,” Proc. SPIE 4377, 328–335 (2001).
[CrossRef]

M. Vaidyanathan, T. P. Grayson, R. C. Hardie, L. E. Myers, and P. F. McManamon, “Multispectral Laser radar development and target characterization,” Proc. SPIE 3065, 255–266(1997).
[CrossRef]

A. L. Rankin, A. Huertas, and L. H. Matthies, “Stereo vision based terrain mapping for off-road autonomous navigation,” Proc. SPIE 7332, 733210 (2009).

M. A. Powers and C. C. Davis, “Spectral LADAR as a UGV navigation sensor,” Proc. SPIE 8037, 80371F (2011).
[CrossRef]

Remote Sens. Environ. (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens. Environ. 65, 227–248 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other (8)

K. Burton, J. Jeong, S. Wachsmann-Hogiu, and D. L. Farkas, “Spectral optical imaging in biology and medicine,” in Biomedial Optical Imaging, J. G. Fujimoto and D. L. Farkas, eds. (Oxford, 2009), pp. 29–72.

M. Hebert, “Active and passive range sensing for robotics,” in Proceedings of the 2000 IEEE International Conference on Robotics and Automation (IEEE, 2000), pp. 102–110.

R. Anderson, W. Malila, R. Maxwell, and L. Reed, Military Utility of Multispectral and Hyperspectral Sensors (Environmental Research Institute of Michigan, 1997).

L. Bokobza, “Origin of near-infrared absorption bands,” in Near Infrared Spectroscopy: Principles, Instruments, Applications, H. W. Seisler, ed. (Wiley-VCH, 2002), pp. 12–16.

E. W. Ciurczak, “Principles of near-infrared spectroscopy,” in Handbook of Near-Infrared Analysis, 2nd ed., D. A. Burns and E. W. Ciurczak, eds. (Dekker, 2001), pp. 7–19.

R. A. Schowengerdt, Remote Sensing: Models and Methods for Image Processing, 3rd ed. (Academic, 2007).

J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis, 4th ed. (Springer, 2006).

M. I. Skolnik, Introduction to Radar Systems, 3rd ed. (McGraw-Hill, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Spectral LADAR principle of operation.

Fig. 2.
Fig. 2.

Functional layout of the laboratory demonstrator (ND, neutral density filter; TL, transmitter lens; BS, beam splitter; HNLF, highly nonlinear fiber; MMF, multimode fiber).

Fig. 3.
Fig. 3.

Mean vector components of training data for several material classes. ACU, army combat uniform; HMMWV, high mobility multipurpose wheeled vehicle (Humvee).

Fig. 4.
Fig. 4.

Range histogram, 99% diffuse reflective target.

Fig. 5.
Fig. 5.

Split pixel test configuration.

Fig. 6.
Fig. 6.

Time domain waveforms of a two-target split pixel reflection in 25 bands.

Fig. 7.
Fig. 7.

(a) Partially occluded split pixel panchromatic time domain waveform and (b), (c) associated spectra (bands 1–20).

Fig. 8.
Fig. 8.

Many-object scene at 46 m attenuated effective range.

Fig. 9.
Fig. 9.

Many-object scene. False color images: (a) Euclidean spectral space, (b) SAM spectral space, (c) principal component analysis (PCA) spectral space.

Fig. 10.
Fig. 10.

Spectrally classified point cloud of the many-object scene: MLC method.

Fig. 11.
Fig. 11.

Scene demonstrating partial obscuration with camouflage.

Fig. 12.
Fig. 12.

K-means cluster classified images of plastic obscured by camouflage (a) with time waveform averaging applied and (b) without averaging.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Pr(t,λ)=(PT(t,λ)r2ΩT)Γ(r,λ)(πD24r2Ωr)TA(r,λ)2ηp(r,λ),
Γ=πρ(λ)φ2r2.
σtotal2=σs2+σT2=2qM2FA(RPr+Id+Ibg)Δf+4(kBTRL)FnΔf.

Metrics