Abstract

Passive elements operating with long-range surface plasmon polaritons and constructed as Au stripes embedded in Cytop were investigated theoretically and experimentally at wavelengths near 1310 nm. The elements investigated consist of straight waveguides, S-bends, Y-junctions, couplers, and Mach–Zehnder interferometers. The measured performance of these devices is close to theoretical expectations, although uniformity issues were noted, likely because of fabrication imperfections. Cytop is a low-index polymer suitable for biosensing applications involving aqueous buffers. The elements demonstrated thus could form the basis of integrated biosensing devices operating with long-range surface plasmons.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  3. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [CrossRef]
  4. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  5. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  7. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477– 494 (2006).
    [CrossRef]
  8. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
    [CrossRef]
  9. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
    [CrossRef]
  10. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
    [CrossRef]
  11. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
    [CrossRef]
  12. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
    [CrossRef]
  13. J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
    [CrossRef]
  14. J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).
    [CrossRef]
  15. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
    [CrossRef]
  16. R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
    [CrossRef]
  17. R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
    [CrossRef]
  18. C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
    [CrossRef]
  19. Asahi Glass Company, Cytop technical brochure, http://www.agc.com.
  20. Dupont, Teflon AF Properties, http://www.dupont.com.
  21. A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
    [CrossRef]
  22. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
    [CrossRef]
  23. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
    [CrossRef]
  24. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
    [CrossRef]
  25. Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
    [CrossRef]
  26. Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).
  27. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
    [CrossRef]
  28. Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
    [CrossRef]
  29. N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
    [CrossRef]
  30. C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
    [CrossRef]
  31. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
    [CrossRef]
  32. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14, 2365–2371 (2006).
    [CrossRef]
  33. P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).
  34. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

2010 (3)

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

2009 (5)

N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
[CrossRef]

P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

2008 (3)

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

J. Jiang, C. L. Callender, S. Jacob, J. P. Noad, S. Chen, J. Ballato, and D. W. Smith, “Long-range surface plasmon polariton waveguides embedded in fluorinated polymer,” Appl. Opt. 47, 3892–3900 (2008).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[CrossRef]

2007 (3)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

2006 (5)

2005 (5)

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

2003 (1)

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

2000 (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

1998 (1)

Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
[CrossRef]

Agnarsson, B.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Arnfinnsdottir, N.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Ballato, J.

Berini, P.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
[CrossRef]

P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[CrossRef]

P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14, 2365–2371 (2006).
[CrossRef]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477– 494 (2006).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Boltasseva, A.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

Bozhevolnyi, S. I.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Bramlett, M.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Breukelaar, I.

Buckley, R.

P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).

Callender, C. L.

Chang, P. C.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Charbonneau, R.

Chen, S.

Chiu, C.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

Cho, S.-Y.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Corn, R. M.

A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
[CrossRef]

Daviau, R.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

Degiron, A.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Dellagiacoma, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Fafard, S.

Fong, N.

N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
[CrossRef]

Gudjonsson, T.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Halldorsson, J.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Harrison, C.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Ho, S. T.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Ingthorsson, S.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Ishida, M.

Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
[CrossRef]

Jacob, S.

Jennison, M. J.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Jiang, J.

Jokerst, N. M.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Ju, J. J.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Khan, A.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

Kim, J. T.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, M.-S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, S.-S.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Kjaer, K.

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Kuwana, Y.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).

Lahoud, N.

Larsen, M. S.

Lee, H. J.

A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
[CrossRef]

Lee, M.-H.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Leosson, K.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Lin, C. H.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Lisicka-Shrzek, E.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

Lisicka-Skrzek, E.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

Lu, J.

Lu, W.-K.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Ma, Y.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Maple, M.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Marks, T. J.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Martin, O. J. F.

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Matsumoto, Y.

Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
[CrossRef]

Mattiussi, G.

Morizawa, Y.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).

Niall Tait, R.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

Nikolajsen, R.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Nikolajsen, T.

Noad, J. P.

Oh, C.-H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Oshita, F. K.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Park, S.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Park, S. K.

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

Parkhurst, R.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Salakhutdinov, I.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

Scales, C.

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Smith, D. R.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Smith, D. W.

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Strathman, S. D.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Tait, R. N.

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
[CrossRef]

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

Takayama, K.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).

Takenobu, S.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).

Tyler, T.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Wark, A. W.

A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
[CrossRef]

Wei, J.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Wilhelmi, C.

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Yoshida, K.

Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
[CrossRef]

Zhao, Y.-G.

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

Adv. Opt. Photon. (1)

Anal. Chem. (1)

A. W. Wark, H. J. Lee, and R. M. Corn, “ Long range surface plasmon resonance imaging for bioaffinity sensors,” Anal. Chem. 77, 3904– 3907 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

R. Daviau, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Broadside excitation of surface plasmon waveguides on Cytop,” Appl. Phys. Lett. 94, 091114 (2009).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82, 668–670 (2003).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Y.-G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. T. Kim, S. Park, J. J. Ju, S. K. Park, M.-S. Kim, and M.-H. Lee, “Low-loss polymer-based long-range surface plasmon-polariton waveguide,” IEEE Photon. Technol. Lett. 19, 1374–1376 (2007).
[CrossRef]

J. Appl. Phys. (1)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98, 043109 (2005).
[CrossRef]

J. Comp. Theo. Nanosci. (1)

P. Berini and R. Buckley, “On the convergence and accuracy of numerical mode computations of surface plasmon waveguides,” J. Comp. Theo. Nanosci. 6, 2040–2053 (2009).

J. Lightwave Technol. (2)

J. Vac. Sci. Technol. A (1)

N. Fong, P. Berini, and R. N. Tait, “Fabrication of surface plasmon waveguides on thin CYTOP membranes,” J. Vac. Sci. Technol. A 27, 614– 619 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729– 735 (2010).
[CrossRef]

Microelectron. Eng. (2)

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

R. Daviau, A. Khan, E. Lisicka-Skrzek, R. N. Tait, and P. Berini, “Fabrication of surface plasmon waveguides and integrated components on Cytop,” Microelectron. Eng. 87, 1914–1921 (2010).
[CrossRef]

New J. Phys. (2)

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77, 021804(R) (2008).
[CrossRef]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Plasmonics (1)

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Rep. Res. Lab. Asahi Glass Co. Ltd. (1)

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd. 56, 35–38 (2006).

Sens. Actuators A (1)

Y. Matsumoto, K. Yoshida, and M. Ishida, “A novel deposition technique for fluorocarbon films and its applications for bulk- and surface-micromachined devices,” Sens. Actuators A 66, 308–314 (1998).
[CrossRef]

Sens. Actuators B (1)

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Solid-State Electron. (1)

C. H. Lin, F. K. Oshita, M. J. Jennison, P. C. Chang, J. Wei, C. Wilhelmi, M. Bramlett, R. Parkhurst, S. D. Strathman, and M. Maple, “Performances of CYTOP low-k dielectric layer bridged GaAs-based enhancement mode pHEMT for wireless power application,” Solid-State Electron. 49, 1708–1712 (2005).
[CrossRef]

Other (4)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Asahi Glass Company, Cytop technical brochure, http://www.agc.com.

Dupont, Teflon AF Properties, http://www.dupont.com.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Front cross-sectional view of chips.

Fig. 2.
Fig. 2.

Attenuation of the LRSPP as a function of stripe thickness and width.

Fig. 3.
Fig. 3.

Radiation loss versus stripe radius of curvature (w=5μm).

Fig. 4.
Fig. 4.

Sketch of loss contributions in an MZI designed by cascading straight and curved sections. The curve (blue), S-bend (yellow), and Y-junction (red) form its component elements. TL1 to TL4 are transition losses encountered at waveguide discontinuities.

Fig. 5.
Fig. 5.

Coupling length (CL1) versus separation (S) for 3 dB coupling.

Fig. 6.
Fig. 6.

Microscope images of devices: (a) S-bends of varying radius of curvature; (b) Y-junctions of varying radius of curvature flipped and interleaved.

Fig. 7.
Fig. 7.

Block diagram of experiment setup for the optical measurements: (a) mode image capture, (b) output power measurement, (c) calibration.

Fig. 8.
Fig. 8.

Results of Cutback 1.

Fig. 9.
Fig. 9.

Results of attenuation versus stripe width for straight waveguides.

Fig. 10.
Fig. 10.

Butt-coupling losses of different waveguide widths for 31 nm thick waveguide.

Fig. 11.
Fig. 11.

Results of insertion loss versus radius of curvature for S-bends.

Fig. 12.
Fig. 12.

Results of insertion loss versus radius of curvature for Y-junctions.

Fig. 13.
Fig. 13.

Insertion loss measurements versus wavelength for an MZI and a nearby straight waveguide (two wavelength sweeps were performed for each).

Fig. 14.
Fig. 14.

Coupler transfer coefficients versus stripe separation.

Tables (1)

Tables Icon

Table 1. Theoretical Loss Contributions in an MZI Fabricated on a 3 mm Long Die Compared with the Experiment Result

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔΦ=2πλ(neff1L1neff2L2,

Metrics