Abstract

We demonstrate a method to make possible the mass production of corrugated long-period fiber gratings (C-LPFGs) by utilizing imprint lithography on polycarbonate (PC) substrates. For such C-LPFGs whose working principle is based on photoelastic effect, pretensile tension is required to be applied to inducing periodical refractive index variation. We then present an attempt to use PC as embedding material for providing internal compressive stress for C-LPFGs to have a photoelastic effect. This type of LPFG, termed embedded corrugated long-period fiber gratings (EC-LPFGs), is obtained after reimprinting the C-LPFGs into other PC substrates. Since compressive stress is retained due to the materials of different coefficients of thermal expansion (CTE), unlike C-LPFGs, EC-LPFGs can serve as strain, bending, and temperature sensors without the need of pretensile strain. The two most troublesome problems, the fragility of an etched fiber grating and the requirement of pretensile strain, can be simultaneously alleviated or solved by EC-LPFGs.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  3. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
    [CrossRef]
  4. D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
    [CrossRef]
  5. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24, 646–648 (1999).
    [CrossRef]
  6. Y.-J. Rao, Y.-P. Wang, Z.-L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21, 1320–1327 (2003).
    [CrossRef]
  7. Y.-P. Wang, L. Xiao, D. N. Wang, and W. Jin, “Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity,” Opt. Lett. 31, 3414–3416 (2006).
    [CrossRef]
  8. N.-K. Chen, D.-Y. Hsu, and S. Chi, “Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding,” Opt. Lett. 32, 2082–2084 (2007).
    [CrossRef]
  9. S. G. Kosinski and A. M. Vengsarkar, “Splicer-based long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper ThG3.
  10. I. K. Hwang, S. H. Yun, and B. Y. Kim, “Long-period fiber gratings based on periodic microbends,” Opt. Lett. 24, 1263–1265 (1999).
    [CrossRef]
  11. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000).
    [CrossRef]
  12. M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
    [CrossRef]
  13. Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
    [CrossRef]
  14. L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated by periodically tapering standard single-mode fiber,” Appl. Opt. 47, 1549–1552 (2008).
    [CrossRef]
  15. C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
    [CrossRef]
  16. C.-C. Chiang, T.-C. Cheng, H.-J. Chang, and L. Tsai, “Sandwiched long-period fiber grating filter based on periodic SU-8-thick photoresist technique,” Opt. Lett. 34, 3677–3679 (2009).
    [CrossRef]
  17. C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
    [CrossRef]
  18. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
    [CrossRef]
  19. S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectron. Eng. 35, 237–240 (1997).
    [CrossRef]
  20. F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
    [CrossRef]
  21. J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
    [CrossRef]
  22. C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
    [CrossRef]

2010 (1)

C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

2004 (1)

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

2003 (1)

2002 (1)

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

2001 (1)

2000 (2)

S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000).
[CrossRef]

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

1999 (3)

1998 (2)

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightwave Technol. 16, 1606–1612 (1998).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

1997 (1)

S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectron. Eng. 35, 237–240 (1997).
[CrossRef]

1996 (3)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Brebner, J. L.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

Bucholtz, F.

Chang, H.-J.

C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

C.-C. Chiang, T.-C. Cheng, H.-J. Chang, and L. Tsai, “Sandwiched long-period fiber grating filter based on periodic SU-8-thick photoresist technique,” Opt. Lett. 34, 3677–3679 (2009).
[CrossRef]

Chang, J.-H.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

Chao, C.-C.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

Chen, N.-K.

Cheng, F.-S.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

Cheng, T.-C.

Chern, G.-W.

Chi, S.

Chiang, C.-C.

C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

C.-C. Chiang, T.-C. Cheng, H.-J. Chang, and L. Tsai, “Sandwiched long-period fiber grating filter based on periodic SU-8-thick photoresist technique,” Opt. Lett. 34, 3677–3679 (2009).
[CrossRef]

Chou, S. Y.

S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectron. Eng. 35, 237–240 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Davis, D. D.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Digonnet, M. J. F.

Dong, X.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Fujimaki, M.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

Gaylord, T. K.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Glytsis, E. N.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Gourgon, C.

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

He, S.

Hirao, K.

Hsu, D.-Y.

Hwang, I. K.

Jiang, Y.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Jin, W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Kazansky, P. G.

Kersey, A. D.

Kim, B. Y.

Kino, G. S.

Kondo, Y.

Kosinski, S. G.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

S. G. Kosinski and A. M. Vengsarkar, “Splicer-based long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper ThG3.

Krauss, P. R.

S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectron. Eng. 35, 237–240 (1997).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Kuo, J.-S.

C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

Lazzarino, F.

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

Lee, H. P.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Li, Q.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Lin, C. Y.

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

Lin, C.-H.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Lin, C.-Y.

Lu, C.

Lyons, E.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Mettler, S. C.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

Mitsuyu, T.

Nishihara, Y.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

Nouchi, K.

Ohki, Y.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

Patrick, H. J.

Perret, C.

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

Ran, Z.-L.

Rao, Y.-J.

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Roorda, S.

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

Savin, S.

Schiavone, P.

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

Shao, L.-Y.

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

Tam, H. Y.

Tomov, I.

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

Tsai, L.

Vengsarkar, A. M.

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

S. G. Kosinski and A. M. Vengsarkar, “Splicer-based long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper ThG3.

Wang, D. N.

Wang, L. A.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

C.-Y. Lin, L. A. Wang, and G.-W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
[CrossRef]

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

Wang, Y.-P.

Watanabe, M.

Weng, Y.-C.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

Xiao, L.

Yang, S.-Y.

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

Yun, S. H.

Zhao, J.

Zhu, T.

Appl. Opt. (1)

Electron. Lett. (2)

C. Y. Lin and L. A. Wang, “Loss-tunable long period fibre grating made from etched corrugation structure,” Electron. Lett. 35, 1872–1873 (1999).
[CrossRef]

D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long-period fibre grating fabrication with focused CO2 laser pulses,” Electron. Lett. 34, 302–303 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Jiang, Q. Li, C.-H. Lin, E. Lyons, I. Tomov, and H. P. Lee, “A novel strain-induced thermally tuned long-period fiber grating fabricated on a periodic corrugated silicon fixture,” IEEE Photon. Technol. Lett. 14, 941–943 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. Fujimaki, Y. Nishihara, Y. Ohki, J. L. Brebner, and S. Roorda, “Ion-implantation-induced densification in silica-based glass for fabrication of optical fiber gratings,” J. Appl. Phys. 88, 5534–5537 (2000).
[CrossRef]

J. Lightwave Technol. (4)

J. Micro/Nanolith. MEMS MOEMS (1)

C.-C. Chiang, H.-J. Chang, and J.-S. Kuo, “Novel fabrication method of corrugated long-period fiber gratings by thick SU-8 photoresist and wet-etching technique,” J. Micro/Nanolith. MEMS MOEMS 9, 033007 (2010).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J.-H. Chang, F.-S. Cheng, C.-C. Chao, Y.-C. Weng, S.-Y. Yang, and L. A. Wang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687–1690 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (2)

F. Lazzarino, C. Gourgon, P. Schiavone, and C. Perret, “Mold deformation in nanoimprint lithography,” J. Vac. Sci. Technol. B 22, 3318–3322 (2004).
[CrossRef]

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996).
[CrossRef]

Microelectron. Eng. (1)

S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectron. Eng. 35, 237–240 (1997).
[CrossRef]

Opt. Lett. (7)

Other (1)

S. G. Kosinski and A. M. Vengsarkar, “Splicer-based long-period fiber gratings,” in Optical Fiber Communication Conference, Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), paper ThG3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic 3D diagrams of the imprint lithography process for making C-LPFGs: (a) before imprinting; (b) fibers are immersed in PC melt by pressing the PDMS mold; (c) HF etches the revealed fiber regions and permeates into the other sides of fibers; (d) C-LPFGs are retrieved after the PC substrate is dissolved by THF.

Fig. 2.
Fig. 2.

(a) Photograph of the corrugated structure fabricated by using imprint lithography, (b) a symmetric C-LPFG, (c) an asymmetric C-LPFG.

Fig. 3.
Fig. 3.

Evolution of transmission spectra of the C-LPFG under tensile strain. The resonant wavelength is almost fixed, but with significant dip attenuation when the applied strain increases.

Fig. 4.
Fig. 4.

Schematic flow diagrams of EC-LPFG fabrication by using the imprint lithography process (a) at the beginning, (b) when the symmetric C-LPFG is embedded in melted PC and pressed by the PDMS mold, and (c) after cooling. Actually, the PC substrate is bent slightly, but this is not shown in (c).

Fig. 5.
Fig. 5.

Photograph of an EC-LPFG. The PC substrate has a slight bend (curvature 1.6m1).

Fig. 6.
Fig. 6.

(a) Schematic diagram of strain/bending setup. Both ends of the PC substrate are fixed on the stages, and one of the stages can be moved linearly. (b) Transmission spectrum of the EC-LPFG.

Fig. 7.
Fig. 7.

(a) Resonant wavelength shift of EC-LPFG with tensile strain; the evolution of resonant dip is marked by the arrows of solid line when the PC substrate is subject to various tensile stress. (b) Variations of transmission at resonance wavelength and resonant wavelength versus strain. The dotted line marks where the PC substrate becomes flat when the applied strain is 1800 µε.

Fig. 8.
Fig. 8.

(a) Resonant wavelength shift of EC-LPFG with different bending curvatures, (b) variations of transmission at resonance wavelength and resonant wavelength versus curvature. The green dotted line is the linear fitting with a slope of about 4.63nm/m1.

Fig. 9.
Fig. 9.

(a) Resonant wavelength shift of EC-LPFG with temperature, (b) variations of transmission at resonance wavelength and resonant wavelength versus temperature. The blue dotted line is the linear fitting with a slope of about 0.26dB/°C.

Metrics