Abstract

In a previous study, we reported measurements of three-dimensional (3D) optical coherence tomography (OCT) images through a thinned skull by reducing temperatures from 28 °C to 18 °C in vivo in the rat brain to show negative correlation coefficients (CCs) between ratios of signal intensity (RSI) and temperature for applications to monitoring brain viability. In this study, using the same OCT system, we measured 3D OCT images of the rat brain by periodically changing tissue temperatures from 20 °C to 32 °C in vivo. In the evaluation of CCs among RSI, temperature, and heart rate, the largest number of periods was four, and the longest measurement time was 570 min. Averaged CCs between RSI and temperature, and between RSI and heart rate, were 0.42 to 0.50 and 0.48 to 0.64, respectively. RSI reversibly changed subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability because of local ischemia and recovery.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. B. Bouma and J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  3. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
    [CrossRef]
  4. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).
  5. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).
  6. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).
  7. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
    [CrossRef]
  8. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).
  9. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).
  10. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
    [CrossRef]
  11. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
    [CrossRef]
  12. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
    [CrossRef]
  13. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
    [CrossRef]
  14. S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
    [CrossRef]
  15. I. Nishidate, K. Yoshida, and M. Sato, “Changes in optical properties of rat cerebral cortical slices during oxygen glucose deprivation,” Appl. Opt. 49, 6617–6623 (2010).
    [CrossRef]
  16. K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009).
    [CrossRef]
  17. M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
    [CrossRef]
  18. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest maintaining primary temperature by wide-field optical coherence tomography,” Appl. Opt. 49, 4851–4858 (2010).
    [CrossRef]
  19. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “In vivo rat brain measurement of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography,” Appl. Opt. 49, 5686–5696 (2010).
    [CrossRef]
  20. F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
    [CrossRef]
  21. S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
    [CrossRef]
  22. M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
    [CrossRef]
  23. X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
    [CrossRef]
  24. L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).
  25. N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).
  26. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).
  27. A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
    [CrossRef]
  28. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002).
    [CrossRef]
  29. S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
    [CrossRef]
  30. G. Paxinos, The Rat Nervous System (Elsevier, 2004).
  31. E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).
  32. T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

2010 (3)

2009 (5)

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

M. Sato, M. S. Hrebesh, and I. Nishidate, “Measurement of signal intensity depth profiles in rat brains with cardiac arrest using wide-field optical coherence tomography,” Appl. Opt. 48, 4354–4364 (2009).
[CrossRef]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
[CrossRef]

2008 (4)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

2007 (1)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

2006 (2)

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

2004 (4)

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

2003 (1)

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

2002 (3)

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J. E. Surleve Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002).
[CrossRef]

1999 (2)

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
[CrossRef]

1998 (1)

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

1959 (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef]

Abraham, E.

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Andrew, R. D.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

Arai, K.

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

Arora, S.

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Arsenault, J.

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Ascenzi, A.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef]

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Bordenave, E.

Brown, N. J.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

Budka, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chen, W.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Dabu, R.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Drexler, W.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Du, F.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Duker, J. S.

Ekstrom, L. B.

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Fabry, C.

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef]

Fercher, A. F.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Friedman, M.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31, 2308–2310 (2006).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Geocadin, R. G.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Higashi, H.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Homma, R.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Horel, J. A.

S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
[CrossRef]

Hrebesh, M. S.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hung, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Inokuchi, H.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Isagai, T.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Ishihara, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Jafri, M. S.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
[CrossRef]

Jarvis, C. R.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Jia, X.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Jonusauskas, G.

Kadono, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Kalia, N.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

Kawauchi, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Khachaturian, M. H.

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Kikuchi, M.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Koenig, M. A.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Lassegues, M.

Le, A. S. T.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lo, E. H.

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

Lomber, S. G.

S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
[CrossRef]

Maheswari, R. U.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Mccullough, L.

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Minot, P. E.

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Nagata, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

Nawashiro, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Neagu, L.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

Niizuma, T.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

Nishidate, I.

Nomura, D.

Oberle, J.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Ooigawa, H.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Paxinos, G.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

G. Paxinos, The Rat Nervous System (Elsevier, 2004).

Payne, B. R.

S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
[CrossRef]

Pockley, A. G.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

Polischuk, T. M.

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Preusser, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Rollins, A. M.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Rulliere, C.

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Sato, M.

Sato, S.

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Simultaneous measurement of changes in light absorption due to the reduction of cytochrome c oxidase and light scattering in rat brains during loss of tissue viability,” Appl. Opt. 47, 4164–4176 (2008).
[CrossRef]

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Sattman, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Surleve Bazeille, J. E.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Takaoka, H.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Tanaka, E.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Tang, C. M.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
[CrossRef]

Tang, R.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
[CrossRef]

Tanifuji, M.

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Thakor, N. V.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

Tsunenari, T.

Tsurumachi, N.

Tuch, D. S.

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Ugurbil, K.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Unterhuber, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

Vanduffel, W.

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Venkatraman, A.

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Watanabe, Y.

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

Watson, C.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

Wojtkowski, M.

Wood, R. F. M.

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

Yamamoto, S.

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Yoshida, K.

Zhang, N.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Zhang, Y.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Zhu, X. H.

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Am. Fam. Phys. (1)

L. Mccullough and S. Arora, “Diagnosis and treatment of hypothermia,” Am. Fam. Phys. 70, 2325–2332 (2004).

Ann. Surg. (1)

N. Kalia, A. G. Pockley, R. F. M. Wood, and N. J. Brown, “Effects of hypothermia and rewarming on the mucosal villus microcirculation and survival after rat intestinal ischemia-reperfusion injury,” Ann. Surg. 236, 67–74 (2002).

Appl. Opt. (6)

Clin. Hemorheol. Microcirc. (1)

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc. 31, 31–40 (2004).

Exp. Transl. Stroke Med. (1)

K. Arai and E. H. Lo, “Experimental models for analysis of oligodendrocyte pathophysiology in stroke,” Exp. Transl. Stroke Med. 1, 6 (2009).
[CrossRef]

J. Biomed. Opt. (2)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, W. Drexler, A. S. T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex-vivo and in-vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt. 9, 719–724 (2004).
[CrossRef]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattman, A. F. Fercher, W. Drexler, M. Preusser, H. Budka, and A. S. T. Le, “Imaging ex-vivo and pathological human brain tissue with ultra-high-resolution optical coherence tomography,” J. Biomed. Opt. 10, 011006-1 (2004).

J. Biophys. Biochem. Cytol. (1)

A. Ascenzi and C. Fabry, “Technique for dissection and measurement of refractive index of osteones,” J. Biophys. Biochem. Cytol. 6, 139–142 (1959).
[CrossRef]

J. Neurophysiol. (1)

E. Tanaka, S. Yamamoto, H. Inokuchi, T. Isagai, and H. Higashi, “Membrane dysfunction induced by in vitro ischemia in rat hippocampal CA1 pyramidal neurons,” J. Neurophysiol. 80, 1872–1880 (1999).

J. Neurosci. Methods (5)

S. W. Jeon, M. A. Shure, K. B. Baker, D. Hung, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography,” J. Neurosci. Methods 154, 96–101 (2006).
[CrossRef]

S. G. Lomber, B. R. Payne, and J. A. Horel, “The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function,” J. Neurosci. Methods 86, 179–194 (1999).
[CrossRef]

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176, 85–95 (2009).
[CrossRef]

R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124, 83–92 (2003).
[CrossRef]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamic during function brain activation,” J. Neurosci. Methods 178, 162–173(2009).
[CrossRef]

Magn. Reson. Med. (1)

M. H. Khachaturian, J. Arsenault, L. B. Ekstrom, D. S. Tuch, and W. Vanduffel, “Focal reversible deactivation of cerebral metabolism affects water diffusion,” Magn. Reson. Med. 60, 1178–1189 (2008).
[CrossRef]

Neurobiol. Dis. (1)

T. M. Polischuk, C. R. Jarvis, and R. D. Andrew, “Intrinsic optical signaling denoting neuronal damage in response to acute excitotoxic insult by domoic acid in the hippocampal slice,” Neurobiol. Dis. 4, 423–437 (1998).

Neurosci. Lett. (1)

S. Kawauchi, S. Sato, H. Ooigawa, H. Nawashiro, M. Ishihara, and M. Kikuchi, “Light scattering change precedes loss of cerebral adenosine triphosphate in a rat global ischemic brain model,” Neurosci. Lett. 459, 152–156 (2009).
[CrossRef]

Opt. Commun. (2)

M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun. 271, 573–580 (2007).

R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202, 47–54 (2002).

Opt. Lett. (1)

Proc. Natl. Acad. Sci. (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. 87, 6082–6086 (1990).

Proc. Natl. Acad. Sci. U.S.A. (1)

F. Du, X. H. Zhu, Y. Zhang, M. Friedman, N. Zhang, K. Ugurbil, and W. Chen, “Tightly coupled brain activity and cerebral ATP metabolic rate,” Proc. Natl. Acad. Sci. U.S.A. 105, 6409–6414 (2008).
[CrossRef]

Resuscitation (1)

X. Jia, M. A. Koenig, A. Venkatraman, N. V. Thakor, and R. G. Geocadin, “Post-cardiac arrest temperature manipulation alters early EEG bursting in rats,” Resuscitation 78, 367–373 (2008).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Other (3)

B. Bouma and J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (Elsevier, 2007).

G. Paxinos, The Rat Nervous System (Elsevier, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of the measurement system consisting of a quadrature fringe wide-field optical coherence tomography (OCT) instrument, bioamplifier, digital multimeter for temperature measurements, and temperature controller.

Fig. 2.
Fig. 2.

Variations in temperature with time measured by the thermocouple in Rat 3.

Fig. 3.
Fig. 3.

Variations in heart rate with time obtained from electrocardiograms in Rat 3.

Fig. 4.
Fig. 4.

Relationship between heart rate and temperature in Rat 3. CC, correlation coefficient.

Fig. 5.
Fig. 5.

Photographs of (a) thinned skull and (b) averaged image by 400 en face XY OCT images measured from the surface to a depth of 2.8 mm in Rat 3. The dashed rectangle area is 4×4mm2. M, medial; R, rostral.

Fig. 6.
Fig. 6.

Resliced sectional images (a) in the XZ plane through point C in Fig. 5(b) at first measurement and (b) in the YZ plane. The image area is 4×2.8(depth)mm2. The white bar means 500 μm.

Fig. 7.
Fig. 7.

Depth profiles of signal intensity at point C in Fig. 5(b) at measurement times of (a) 0 min and 70 min, (b) 120 min and 190 min, (c) 270 min and 360 min, (d) 360 min and 430 min, and (e) 510 min and 570 min. Depth profiles are normalized with the maximum signal intensity at 360 min.

Fig. 8.
Fig. 8.

Variations in RSI with time at each point A to E in Fig. 5(b) in (a) Region I and (b) Region II. Variations in averaged RSI with time in (c) Region I and (d) in Region II. Arrows mean pentobarbital sodium administration to the rat.

Fig. 9.
Fig. 9.

Variations of temperature and averaged RSIs in Region I and II in Rat 4. Arrows mean pentobarbital sodium administration to the rat.

Fig. 10.
Fig. 10.

Relationship between the ratio of signal intensity and temperature in Rat 1 to Rat 4 in (a) Region I and (b) Region II.

Fig. 11.
Fig. 11.

Relationship between the ratio of signal intensity and heart rate in Rat 1 to Rat 4 in (a) Region I and (b) Region II.

Tables (1)

Tables Icon

Table 1. Experimental Conditions and Correlation Coefficients between RSI, Temperature, and Heart Rate

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Ratio of signal intensity in Region I and II :|II,IIIBG||II,IIIBG|START.

Metrics