Abstract

Mode conversion from the fundamental to a higher-order mode in a rectangular-core optical fiber is accomplished by applying pressure with the edge of a flat plate. Modal analysis of the near and far field images of the fiber’s transmitted beam determines the purity of the converted mode. Mode conversion reaching 75% of the targeted higher-order mode is achieved using this technique. Conversion from a higher-order mode back to the fundamental mode is also demonstrated with comparable efficiency. Propagation of a higher-order mode in a rectangular-core fiber allows for better thermal management and bend-loss immunity than conventional circular-core fibers, extending the power-handling capabilities of optical fibers.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  2. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266(2008).
    [CrossRef]
  3. J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.
  4. R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B 19, 1521–1534 (2002).
    [CrossRef]
  5. R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.
  6. L. J. Cooper, P. Wang, R. B. Williams, J. K. Sahu, W. A. Clarkson, A. M. Scott, and D. Jones, “High-power Yb-doped multicore ribbon fiber laser,” Opt. Lett. 30, 2906–2908(2005).
    [CrossRef]
  7. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23, 52–54 (1998).
    [CrossRef]
  8. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
    [CrossRef]
  9. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
    [CrossRef]
  10. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27, 698–700 (2002).
    [CrossRef]
  11. G. Nemova and R. Kashyap, “High-power long-period-grating-assisted erbium-doped fiber amplifier,” J. Opt. Soc. Am. B 25, 1322–1327 (2008).
    [CrossRef]
  12. D. Sáez-Rodriguez, J. L. Cruz, A. Díez, and M. V. Andrés, “Fiber laser with combined feedback of core and cladding modes assisted by an intracavity long-period grating,” Opt. Lett. 36, 1839–1841 (2011).
    [CrossRef]
  13. S. Savin, M. J. F. Digonnet, G. S. Kino, and H. J. Shaw, “Tunable mechanically induced long-period fiber gratings,” Opt. Lett. 25, 710–712 (2000).
    [CrossRef]
  14. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [CrossRef]
  15. M. Tsubokawa, T. Higashi, and Y. Negishi, “Mode couplings due to external forces distributed along a polarization-maintaining fiber: an evaluation,” Appl. Opt. 27, 166–173 (1988).
    [CrossRef]
  16. W. A. Gambling, D. N. Payne, and H. Matsumura, “Mode conversion coefficients in optical fibers,” Appl. Opt. 14, 1538–1542 (1975).
    [CrossRef]
  17. M. D. Feit and J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980).
    [CrossRef]

2011

2010

2008

2006

2005

2002

2000

1998

1988

1982

1980

1975

Alunni, D. A.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Andrés, M. V.

Barty, C. P. J.

Beach, R. J.

Brasure, L. D.

Bullington, A.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Carlson, C. G.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Clarkson, W. A.

Cooper, L. J.

Cruz, J. L.

Cutter, K. P.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Dawson, J. W.

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16, 13240–13266(2008).
[CrossRef]

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Díez, A.

Digonnet, M. J. F.

Dimarcello, F. V.

Feit, M. D.

R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B 19, 1521–1534 (2002).
[CrossRef]

M. D. Feit and J. A. Fleck, “Computation of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154–1164 (1980).
[CrossRef]

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Fermann, M. E.

Fienup, J. R.

Fini, J. M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

Fleck, J. A.

Gambling, W. A.

Ghalmi, S.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[CrossRef]

Hayden, J. S.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Heebner, J.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Heebner, J. E.

Higashi, T.

Jones, D.

Kashyap, R.

Kino, G. S.

Krashkevich, D.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Matsumura, H.

Mead, R. W.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

Messerly, M.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Messerly, M. J.

Mitchell, S. C.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Monberg, E.

Negishi, Y.

Nemova, G.

Nicholson, J. W.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[CrossRef]

Nilsson, J.

Page, R. H.

Pax, P.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Pax, P. H.

Payne, D. N.

Payne, S. A.

R. J. Beach, M. D. Feit, R. H. Page, L. D. Brasure, R. Wilcox, and S. A. Payne, “Scalable antiguided ribbon laser,” J. Opt. Soc. Am. B 19, 1521–1534 (2002).
[CrossRef]

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

Ramachandran, S.

Richardson, D. J.

Sáez-Rodriguez, D.

Sahu, J. K.

Savin, S.

Scott, A. M.

Shaw, H. J.

Shverdin, M. Y.

Siders, C. W.

Sridharan, A.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Sridharan, A. K.

Stappaerts, E. A.

Tsubokawa, M.

Wang, P.

Wang, Z.

Ward, B. G.

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Wilcox, R.

Williams, R. B.

Wisk, P.

Yan, M.

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

R. J. Beach, M. D. Feit, S. C. Mitchell, K. P. Cutter, S. A. Payne, R. W. Mead, J. S. Hayden, D. Krashkevich, and D. A. Alunni, “Phase-locked antiguided multiple-core ribbon fiber,” IEEE Photon. Technol. Lett. 15, 670–672.

J. Opt. Soc. Am. B

Laser Photon. Rev.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra-large effective-area, higher-order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev. 2, 429–448(2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. W. Dawson, A. Bullington, J. Heebner, M. Messerly, P. Pax, A. Sridharan, B. G. Ward, and C. G. Carlson, “Ribbon fiber geometry for power scaling in continuous wave fiber lasers,” presented at the Solid State and Diode Laser Technology Review, Santa Fe, New Mexico, 6–9 June 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Microscope image of a rectangular-core “ribbon” fiber is shown with a 5 μm by 50 μm core and NA of 0.1. The cladding has a diameter of 250 μm.

Fig. 2.
Fig. 2.

Laser source operable as a tunable or ASE source has an operating range between 1020 and 1030 nm. Cylindrical lenses mode match the input laser source to the rectangular core of the ribbon fiber. A screw-adjustable flat plate applies pressure to the fiber for mode conversion. An 8 mm lens collimates the fiber’s output onto a diffraction grating. The zeroth order directs the beam toward a CCD camera that captures a near-field and far-field images of the beam. The removable lens is in place for reimaging the far field formed after the 8 mm lens onto the camera when a far field image is desired. The grating’s first order disperses the source wavelengths across a CCD camera, allowing imaging of the spectral dependence of the fiber’s output mode.

Fig. 3.
Fig. 3.

Near- and far-field mode images for the fundamental mode (left) and higher-order mode 7 (right) are shown. A table displays the modes with the largest modal content contributing to the image.

Fig. 4.
Fig. 4.

After exciting mode 7 with the pressure plate, a second pressure plate is placed after the fiber. Mode 7 is converted back to mode 1 (fundamental mode) with 67% conversion efficiency.

Fig. 5.
Fig. 5.

Evolution of light in a ribbon fiber is shown with a kink of radius 11.2 mm at a location of 5 mm. The initial field is the fundamental mode of the fiber. (a) Spatial distribution of the field intensity, which is bounded by the extent of the rectangular core. (b) Angular spectrum, the far-field intensity in angular units.

Fig. 6.
Fig. 6.

Modal content in mode 7 is shown as a function of propagation distance for a sharp kink (radius 11.2 mm) followed by a gradual bend (radius 85 mm) in the fiber.

Tables (1)

Tables Icon

Table 1. Fractional Power in Each Observed Mode Excited by Applying Pressure to the Fiber with the Pressure Plate

Metrics