Abstract

Antireflective subwavelength structures (ARS) resembling nanostructures found on the cornea of night-active insects reduce the reflection of light by providing a gradual change in the refractive index at the interface. These artificial ARS have mainly been fabricated by a combination of conventional lithography and reactive ion etching, which constrains their application to planar substrates. We report on the fabrication of ARS using three different techniques including bottom-up and top-down methods as well as their combination on microlens arrays (MLAs) made of fused silica. The optical performance of the resulting ARS on the MLAs is as good as ARS fabricated on planar substrates with increased transmission of up to 96% at certain wavelengths.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32, 2582–2598 (1993).
    [CrossRef]
  2. R. C. Enger and S. K. Case, “Optical-elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220–3228 (1983).
    [CrossRef]
  3. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 μ,” J. Opt. Soc. Am. 66, 515–519 (1976).
    [CrossRef]
  4. T. K. Gaylord, “Zero-reflectivity homogeneous layers and high spatial-frequency surface-relief gratings on lossy materials,” Appl. Opt. 26, 3123–3135 (1987).
    [CrossRef]
  5. W. Stork, N. Streibl, H. Haidner, and P. Kipfer, “Artificial distributed-index media fabricated by zero-order gratings,” Opt. Lett. 16, 1921–1923 (1991).
    [CrossRef]
  6. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973).
    [CrossRef]
  7. A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000).
    [CrossRef]
  8. http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2861 .
  9. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
    [CrossRef]
  10. M. E. Motamedi, W. H. Southwell, and W. J. Gunning, “Antireflection surfaces in silicon using binary optics technology,” Appl. Opt. 31, 4371–4376 (1992).
    [CrossRef]
  11. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
    [CrossRef]
  12. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
    [CrossRef]
  13. M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
    [CrossRef]
  14. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
    [CrossRef]
  15. C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
    [CrossRef]
  16. F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).
  17. M. Burkhardt and R. Brunner, “Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography,” Appl. Opt. 46, 7061–7067 (2007).
    [CrossRef]
  18. P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
    [CrossRef]
  19. Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
    [CrossRef]
  20. L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
    [CrossRef]
  21. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108–13113 (2007).
    [CrossRef]
  22. R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
    [CrossRef]
  23. S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998).
    [CrossRef]
  24. K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).
  25. S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
    [CrossRef]
  26. M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
    [CrossRef]

2010 (3)

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

2008 (2)

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

2007 (2)

2005 (1)

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

2003 (1)

R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[CrossRef]

2001 (2)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

2000 (2)

S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
[CrossRef]

A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000).
[CrossRef]

1999 (1)

1998 (2)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998).
[CrossRef]

1993 (1)

1992 (1)

1991 (1)

1987 (1)

1983 (1)

1976 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973).
[CrossRef]

Baroni, P. Y.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Bielarz, C.

S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
[CrossRef]

Blasi, B.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Boerner, V.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

Brunner, R.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

M. Burkhardt and R. Brunner, “Functional integrated optical elements for beam shaping with coherence scrambling property, realized by interference lithography,” Appl. Opt. 46, 7061–7067 (2007).
[CrossRef]

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

Burkhardt, M.

Case, S. K.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973).
[CrossRef]

Cooper, K.

K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).

Deparnay, A.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

Dickey, F. M.

F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).

Enger, R. C.

Erdmann, L.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

Fuchs, H. J.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Gaylord, T. K.

Glass, R.

R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[CrossRef]

Gombert, A.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Gunning, W. J.

Gupta, R. K.

S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998).
[CrossRef]

Gupta, S. A.

S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998).
[CrossRef]

Haidner, H.

Hamel, C.

K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

Heinzel, A.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Helgert, M.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Herzig, H. P.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Holswade, S. C.

F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).

Homsy, G. M.

S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
[CrossRef]

Horbelt, W.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973).
[CrossRef]

Kaiser, N.

Kalliadasis, S.

S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

Kipfer, P.

Kley, E. B.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Klicker, M.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

Kubler, V.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

Kuittinen, M.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Lalanne, P.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

Langle, M. L.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

Lehr, D.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Leitel, R.

Li, Y. F.

Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Lohmüller, T.

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Maschke, G.

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

Minot, M. J.

Moller, M.

R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[CrossRef]

Morhard, C.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Morris, G. M.

Motamedi, M. E.

Munzert, P.

Nakagawa, W.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Niggemann, M.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

Pacholski, C.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

Paivanranta, B.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Parker, A. R.

A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000).
[CrossRef]

Raguin, D. H.

Rose, K.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Roussey, M.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Sasaki, M.

Scharf, T.

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

Schulz, U.

Schulze, M.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Shealy, D. L.

F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).

Southwell, W. H.

Spatz, J. P.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[CrossRef]

Stork, W.

Streibl, N.

Sundermann, M.

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Tünnermann, A.

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108–13113 (2007).
[CrossRef]

Wendling, I.

Whitney, B.

K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).

Wittwer, V.

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Yang, B.

Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Zanke, C.

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Zhang, J. H.

Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Ind. Eng. Chem. Res. (1)

S. A. Gupta and R. K. Gupta, “A parametric study of spin coating over topography,” Ind. Eng. Chem. Res. 37, 2223–2227 (1998).
[CrossRef]

J. Eur. Opt. Soc. Rapid Publ. (1)

P. Y. Baroni, B. Paivanranta, T. Scharf, W. Nakagawa, M. Roussey, M. Kuittinen, and H. P. Herzig, “Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays,” J. Eur. Opt. Soc. Rapid Publ. 5, 10006 (2010).
[CrossRef]

J. Microlith. Microfab. Microsyst. (1)

L. Erdmann, A. Deparnay, G. Maschke, M. L. Langle, and R. Brunner, “MOEMS-based lithography for the fabrication of micro-optical components,” J. Microlith. Microfab. Microsyst. 4, 041601 (2005).
[CrossRef]

J. Opt. A (1)

A. R. Parker, “515 million years of structural colour,” J. Opt. A 2, R15–R28 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, and J. P. Spatz, “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Lett. 8, 1429–1433 (2008).
[CrossRef]

Nano Today (1)

Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117–127 (2010).
[CrossRef]

Nanotechnology (2)

C. Morhard, C. Pacholski, D. Lehr, R. Brunner, M. Helgert, M. Sundermann, and J. P. Spatz, “Tailored antireflective biomimetic nanostructures for UV applications,” Nanotechnology 21, 425301 (2010).
[CrossRef]

R. Glass, M. Moller, and J. P. Spatz, “Block copolymer micelle nanolithography,” Nanotechnology 14, 1153–1160 (2003).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the ‘moth eye’ ,” Nature 244, 281–282 (1973).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Fluids (1)

S. Kalliadasis, C. Bielarz, and G. M. Homsy, “Steady free-surface thin film flows over topography,” Phys. Fluids 12, 1889–1898 (2000).
[CrossRef]

Proc. SPIE (2)

M. Niggemann, B. Blasi, V. Boerner, A. Gombert, M. Klicker, V. Kubler, P. Lalanne, and V. Wittwer, “Periodic microstructures for large area applications generated by holography,” Proc. SPIE 4438, 108–115 (2001).
[CrossRef]

M. Schulze, H. J. Fuchs, E. B. Kley, and A. Tünnermann, “New approach for antireflective fused silica surfaces by statistical nanostructures,” Proc. SPIE 6883, 68830N (2008).
[CrossRef]

Solar Energy Mater. Solar Cells (1)

A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Blasi, and V. Wittwer, “Antireflective submicrometer surface-relief gratings for solar applications,” Solar Energy Mater. Solar Cells 54, 333–342 (1998).
[CrossRef]

Other (3)

F. M. Dickey, S. C. Holswade, and D. L. Shealy, Laser Beam Shaping Applications (CRC Press, 2006).

http://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=2861 .

K. Cooper, C. Hamel, and B. Whitney, “Conformal photoresist coatings for high aspect ratio features,” in Proceedings of the IWLPC International Wafer-Level Packaging Conference (SMTA, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Interference microscopic images of the investigated MLAs. Left, MLA with a periodicity of 50 µm; center, MLA with a periodicity of 500 µm; and right, array of cylindrical lenses (periodicity, 100 µm). The structure height is 5 µm for all arrays.

Fig. 2.
Fig. 2.

SEM images of AR nanostructures fabricated using exclusively RIE on different MLA structures: a) planar fused silica surface (reference), b) MLA with cylinder lenses (pitch 100 µm), c) MLA with pitch of 500 µm, and d) MLA with pitch of 50 µm. All images were taken from the apex of the microstructures (normal imaging angle).

Fig. 3.
Fig. 3.

SEM images of a cylinder lens arrays decorated with AR nanostructures taken at different positions of a cylinder lens: a) top, b) maximum slope, and c) bottom.

Fig. 4.
Fig. 4.

SEM images of AR nanostructures fabricated on different MLAs: a) fused silica substrate (reference), b) cylinder lens array (lens diameter 100 µm), c) MLA with lenses of 50 µm diameter, and d) MLA with lenses of 500 µm diameter. All images were taken from the apex of the microstructures.

Fig. 5.
Fig. 5.

SEM images of AR nanostructures fabricated by interference lithography on two different samples: a) planar reference sample and b) spherical MLA with a pitch of 500 µm.

Fig. 6.
Fig. 6.

Transmission spectra of different MLAs equipped with ARS: a) planar fused silica substrate (reference), b) MLA of cylindrical lenses with 100 µm pitch, c) MLA of lenses with 50 µm pitch, and d) MLA of lenses with 500 µm pitch. Various manufacturing techniques have been employed for the fabrication of ARS: black solid curve, unstructured surface; dashed curve, BCML & RIE; gray solid curve, interference lithography; dotted line, RIE.

Fig. 7.
Fig. 7.

Transmission spectra of different MLAs equipped with ARS, which have been fabricated a) by a combination of BCML and RIE and b) by stochastic RIE process. From light to dark: planar substrate, cylindrical MLA, 50 µm MLA, and 500 µm MLA. Dotted curves show the transmission of a second set of AR surfaces on MLAs with 500 µm pitch.

Metrics