Abstract

For a given illumination source brightness, the transmitted flux of common single-aperture projection optics scales with all three system dimensions, thus preventing the realization of slim devices along with a high lumen output. In this article we introduce a multichannel approach, called “array projector,” which breaks this constraint, thus enabling the realization of ultraslim but high flux systems with inherent homogenization for still image content. The concept is based on regular two-dimensional arrangements of absorbing object structures and projective microlenses superposing their individual images on the screen. After deriving first-order scaling laws for the multichannel projector in contrast to common single-aperture optics, specification of system parameters is shown considering aberrations of a single-channel and collective effects of the array. The technological realization of a sample system is shown and characterized in terms of modulation transfer, homogeneity, depth of focus and flux.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2007).
  2. F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4, 86–91 (2008).
    [CrossRef]
  3. E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 616901–616912 (2007).
  4. J. W. Pan, S. H. Tu, C. M. Wang, and J. Y. Chang, “High efficiency pocket-size projector with a compact projection lens and a light emitting diode-based light source system,” Appl. Opt. 47, 3406–3414 (2008).
    [CrossRef]
  5. Duparre P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
    [CrossRef]
  6. A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).
  7. M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).
  8. G. Lippmann, “E´prevuves re´versibles. Photographie inte´grales,” Comptes Rendus de l’Acade´mie des Sciences 146, 446–451 (1908).
  9. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
    [CrossRef]
  10. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).
  11. H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
    [CrossRef]
  12. V. Mahajan, Aberration Theory Made Simple (SPIE Optical Engineering, 1991).
  13. V. Mahajan, Optical Imaging and Aberrations. Part 1 (SPIE Optical Engineering, 1998).
  14. F. Barrière, G. Druart, N. Guèrineau, and J. Taboury, “Design strategies to simplify and miniaturize imaging systems,” Appl. Opt. 50, 943–951 (2011).
    [CrossRef]
  15. H. Gross, Handbook of Optical Systems. Part 3 (Wiley-VCH, 2005).
  16. U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).
  17. Z. D. Popovich, R. A. Sprague, and G. A. N. Conell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef]
  18. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
    [CrossRef]
  19. P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
    [CrossRef]

2011 (1)

2010 (2)

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

2008 (2)

2007 (1)

E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 616901–616912 (2007).

2006 (1)

U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).

2005 (3)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

Duparre P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

2000 (1)

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

1998 (1)

H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
[CrossRef]

1990 (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

1988 (1)

1908 (1)

G. Lippmann, “E´prevuves re´versibles. Photographie inte´grales,” Comptes Rendus de l’Acade´mie des Sciences 146, 446–451 (1908).

Alda, J.

H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
[CrossRef]

Barrière, F.

Bräuer, A.

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

Duparre P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Brückner, A.

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

Chang, J. Y.

Conell, G. A. N.

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Dannberg, Duparre P.

Dannberg, P.

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Druart, G.

Duparré, J.

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

Fournier, F.

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4, 86–91 (2008).
[CrossRef]

Geissler, E.

E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 616901–616912 (2007).

Gross, H.

H. Gross, Handbook of Optical Systems. Part 3 (Wiley-VCH, 2005).

Guèrineau, N.

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Kamal, H.

H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
[CrossRef]

Kim, E.-S.

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Kley, E.-B.

U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).

Kudaev, S.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

Lee, B.

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Leitel, R.

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

Lippmann, G.

G. Lippmann, “E´prevuves re´versibles. Photographie inte´grales,” Comptes Rendus de l’Acade´mie des Sciences 146, 446–451 (1908).

Mahajan, V.

V. Mahajan, Aberration Theory Made Simple (SPIE Optical Engineering, 1991).

V. Mahajan, Optical Imaging and Aberrations. Part 1 (SPIE Optical Engineering, 1998).

Mann, G.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Pan, J. W.

Popovich, Z. D.

Rolland, J.

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4, 86–91 (2008).
[CrossRef]

Schreiber, P.

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

Duparre P. Dannberg, P. Schreiber, A. Bräuer, and A. Tünnermann, “Thin compound-eye camera,” Appl. Opt. 44, 2949–2956 (2005).
[CrossRef]

Shin, D.-H.

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Sieler, M.

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2007).

Sprague, R. A.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Taboury, J.

Tu, S. H.

Tünnermann, A.

Völkel, R.

H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
[CrossRef]

Wagner, L.

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

Wang, C. M.

Zeitner, U. D.

U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

Appl. Opt. (4)

Comptes Rendus de l’Acade´mie des Sciences (1)

G. Lippmann, “E´prevuves re´versibles. Photographie inte´grales,” Comptes Rendus de l’Acade´mie des Sciences 146, 446–451 (1908).

J. Disp. Technol. (1)

F. Fournier and J. Rolland, “Design methodology for high brightness projectors,” J. Disp. Technol. 4, 86–91 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using a lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Opt. Eng. (1)

H. Kamal, R. Völkel, and J. Alda, “Properties of moiré magnifiers,” Opt. Eng. 37, 3007 (1998).
[CrossRef]

Proc. SPIE (6)

P. Dannberg, G. Mann, L. Wagner, and A. Bräuer, “Polymer UV-moulding for micro-optical systems and O/E integration,” Proc. SPIE 4179, 137–145 (2000).
[CrossRef]

U. D. Zeitner and E.-B. Kley, “Advanced lithography for micro-optics,” Proc. SPIE 6290, 629009-1–629009–8 (2006).

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE 5942, 59420K-1–59420K-9 (2005).

E. Geissler, “Meeting the challenges of developing LED-based projection display,” Proc. SPIE 6196, 616901–616912 (2007).

A. Brückner, J. Duparré, P. Dannberg, R. Leitel, and A. Bräuer, “Driving micro-optical imaging systems towards miniature camera applications,” Proc. SPIE 7716, 77160J-1–77160J-11 (2010).

M. Sieler, P. Schreiber, P. Dannberg, and A. Bräuer, “Array projection optics: multi-channel design for ultra slim projectors,” Proc. SPIE 7716, 77161A-1–77161A-10 (2010).

Other (4)

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 2007).

V. Mahajan, Aberration Theory Made Simple (SPIE Optical Engineering, 1991).

V. Mahajan, Optical Imaging and Aberrations. Part 1 (SPIE Optical Engineering, 1998).

H. Gross, Handbook of Optical Systems. Part 3 (Wiley-VCH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1.
Fig. 1.

Slide projector geometry.

Fig. 2.
Fig. 2.

Optics scheme of array projection optics.

Fig. 3.
Fig. 3.

Illumination light path for both collimated and strongly divergent light producing interchannel crosstalk.

Fig. 4.
Fig. 4.

Simulated image for noncollimated illumination of a sample system with hexagonally packed channels. The projected image in the center is surrounded by aberrated ghost images, corresponding to strongly divergent rays of illumination.

Fig. 5.
Fig. 5.

Scaling of system length depending on array size at constant flux and focal ratio for array projection optics with a transmission of 50%. The resulting system length drops down to 15% for an array size of 100 channels superposing their spatial images to a composite image on the screen.

Fig. 6.
Fig. 6.

Geometry for DOF comparison of a single-aperture projector, an array projector, and a single lenslet. βDiff is the diffraction limited angular blur for each setup. The resulting DOF of the array is only determined by its total lateral extension, which corresponds to the number of superposing channels, because each lenslet of the array works hyperfocally, neglecting aberrations. Thus, an array projector and a single-aperture projector are comparable in DOF for equal optics diameter.

Fig. 7.
Fig. 7.

Simplified inverse system for derivation of Seidel coefficients of a single aspherical lenslet. The exit pupil is located at the lens vertex. The dashed line indicates a defocused image plane that is shifted toward the exit pupil by ΔR<0 with respect to the Gaussian image plane.

Fig. 8.
Fig. 8.

Results of model verification for a sample setup with an aperture of 800 µm, (f/#)=2.5, n=1.64, and k=0.37. The dashed lines indicate the results of real raytracing. The straight lines show the results of third-order aberration calculations. (a) The projection lens is focused in three different states. The minimum axial RMS spot size results for a projection lens that is slightly defocused (ΔR=50μm). An increased defocus (ΔR=100μm) balances the spot size over the entire field but enlarges the absolute value in parallel. (b) The single projector is illuminated with three different wavelengths. The defocus ΔR corresponds to the different focal lengths caused by dispersion.

Fig. 9.
Fig. 9.

Performance map for an axial field point. All compared systems are slightly defocused getting identical Seidel coefficients for defocus and spherical aberration. The white dot marks the specified system.

Fig. 10.
Fig. 10.

Simulated image of a single-channel on the screen for monochrome illumination using real raytracing software neglecting diffraction effects.

Fig. 11.
Fig. 11.

Array size versus array performance ratio Q for different array sizes. The square packed arrays are sampled with 7×7 channels. The chosen array sizes correspond to Kp=4%, 8%, 12% and 20% maximum decentration relative to the lenslet pitch.

Fig. 12.
Fig. 12.

Layout of monolithic array projection optics. An etched chromium mask forms the object array that is buried beneath the UV-molded condenser array on the backside. The projection lenses on the front side of the monolithic device have a slightly smaller pitch for tilting the optical axes of peripheral projection channels.

Fig. 13.
Fig. 13.

Technology flow for realization of array projection optics.

Fig. 14.
Fig. 14.

Detailed view on an electron-beam written gray tone pixelated object slide mask with 2 µm pixel pitch showing a portrait, contact printed onto a 4 inch glass wafer. The contact-printing process leads to losses in visible gray tones from 256 to about 64.

Fig. 15.
Fig. 15.

Profilometry of the UV-molded projection lenses with an aperture of 790 µm on a 4 inch wafer. (a) The total deviation in radius of curvature is only ±0.5% over the entire wafer with a mean shape deviation below 40 nm. (b) The realized conic constant is 0.3 giving an aspheric lens shape.

Fig. 16.
Fig. 16.

Detailed object slide mask layout for electron-beam-lithography onto a 4 inch wafer. Each array projector contains 149 hexagonally packed, identical channels. The single array projection optics corresponding to one image are spatially separated by a multiple of the object pitch to simplify the overall layout.

Fig. 17.
Fig. 17.

Size comparison of the realized micro-optics on a 4 inch float glass wafer to a Euro cent. A diced array projector chip is placed on top of the wafer.

Fig. 18.
Fig. 18.

Projected image of a Siemens star and a sample line pattern with 150 linepairs per millimeter in object space. The array projection optics is illuminated by a collimated green LED.

Fig. 19.
Fig. 19.

Square wave MTF measurement of different projected line patterns compared to real raytracing data.

Fig. 20.
Fig. 20.

Captured images of a single-aperture projector, an array projector, and a single lenslet of the array for three screen distances. All projectors use a collimated and homogenized 530 nm LED illumination and are focused to a screen distance of 400 mmm, which is inside diffraction limited hyperfocal DOF of the lenslet. The images where captured directly on a CCD image sensor. While the single-aperture projector and the array show quite similar image quality, the single lenslet has notably better contrast transfer over a wide range of screen distances.

Fig. 21.
Fig. 21.

Results of DOF analysis of an array projector, a single lenslet, and a single-aperture projector.

Fig. 22.
Fig. 22.

Projected keyboard image with a size of 150×75mm2 and 530 mm screen distance. The array projection optics is illuminated by a collimated green LED. The microlenses are focused for a region of sharpest content at one-third of the field, compensating for the blur from field curvature. Hence, the image shows some blur both in the center and in the corners. The image resolution perceivable with the human eye corresponds to about 300×160 pixels. Comparison with Fig. 10 shows good correspondence between simulation results and the real projected image on the screen. In contrast to Fig. 10, the array projection optics was illuminated with half of the beam divergence, thus slightly decreasing aberrations and improving image quality.

Fig. 23.
Fig. 23.

Array projection optics used in Fig. 22 is illuminated by a collimated white LED. While the letters in the center of the image show a red margin, image content in the corners is blurred in blue, due to field-dependent chromatic aberration of a system designed for green illumination. The artifacts in the upper corners result from too large scaled object slides, yielding to not perfectly overlapping condenser lenses, and thus not representing vignetting effects or irradiance inhomogeneity.

Fig. 24.
Fig. 24.

Projected keyboard with a image size of 150×150mm2 and 530 mm screen distance. The array projection optics is illuminated by a collimated white LED. According to ANSI standard a flux of 65 lumens is achieved with illuminance homogeneity of 92%. This enables both nonvignetted image corners and a very good content readability even in the presence of bright daylight ambience.

Fig. 25.
Fig. 25.

Diced array projection prototype with 12×11×3mm3 total system size. The array contains 149 hexagonally arranged single-channels superimposing on the screen. The UV-molded polymer condenser lens array buries the object slide array on top of the glass substrate. The projection lenses on the backside are distanced by one focal length. The array projection optics is illuminated by a collimated green LED to the right.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

ΦSA=π4A·B·T(f/#)2,
ΦSAA(f/#)2a2(f/#)2FSA2(f/#)4.
L=FpΔp,M=LF=pΔp.
ΦArrayF2Tarray(f/#)4N.
Dmax=Kp2pLFwithKp=Δpmaxp.
DSA=DmaxTArray.
lIllu={FSA,for single-aperture optics3F,for array projection optics.
Γ=lArraylSA=F+3FFSA+FSA=2F(f/#)DSA=F2(f/#)pTArray1L1KP.
LN,F=2a·L2a±β·L,DOF=LFLN,
βdiff=2.44·λ·(f/#)F=2.44·λ2a,Lhyp=L|LF=2aβdiff=(2a)22.44·λ.
W(r,θ,h)=bDr2+aCSr4+aChr3cosθ+aAh2r2cos2θ+aDh2r2+aTh3rcosθ,
aS=n(n1)8(1R1S)2(nRn+1S),b=RSR.
aS=18n2(n1)2F3,b=n1.
aCS=aS(n1)8R3k.
bD=ΔRn2F2,
aC=4baS=12n2(n1)F3,
aA=4b2aS=12n2F3,
aD=2b2aSn(n1)4nRS2=12n2F3,
aT=4b3aSn(n1)b2nRS2=(n1)n2F3.
ε¯=Fa(cosθWρsinθρWθ,sinθWρ+cosθρWθ).
rSeidel/RMS=1π0102πε2ρdρdθ.
rSeidel/RMS2=148n4R4·[3a6(1+kn2)2+16a4ΔRnR(1+kn)+24a4h2kn2(n1)2+44a4h2(n1)2+16a4ΔRn2R(1+kn2)(n1)+24a2ΔR2n2R2(n1)2+72a2h2ΔRnR(n1)3+108a2h4(n1)4+48h6(n1)6].
rRMS=rAiry_RMS+rSeidel_RMS,
rAiry_RMS=0.44λ(f/#)
pix#(a,(f/#))=a2rRMS.
rarray(h)=1N·[rRMS(h)+i=2NrRMS(h+δνi)].

Metrics