Abstract

Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67μm and 632.8nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)2)1, with two parameters only, a and b, where σ is in microradians and T is the temperature in °C.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).
  2. L. C. Andrews, Field Guide to Atmospheric Optics, SPIE Field Guides, J.E.Greivenkamp, ed. (SPIE Press, 2004).
  3. R. R. Beland, “Propagation through Atmospheric Optical Turbulence,” in The Infrared and Electro-Optical Systems Handbook (SPIE, 1993).
  4. L. Sjöqvist, “Laser beam propagation in jet engine plume environments—a review,” Proc. SPIE 7115, 71150C (2008).
  5. M. Henriksson, L. Sjöqvist, and O. Gustafsson, “Experimental study of mid-IR laser beam wander close to a jet engine exhaust,” Proc. SPIE 6397, 639709 ((2006).
  6. W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).
  7. V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47, 975–985 (2008).
    [CrossRef]
  8. D. H. Titterton, “Measurement of the distortion generated in a laser beam’s characteristics resulting from passage through an engine’s wake,” in RTO SET Symposium on “E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations” (IAFA, 1998), paper 42.
  9. W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).
  10. W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).
  11. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573(1996).
    [CrossRef]
  12. P. E. Ciddor, “Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials,” Appl. Opt. 41, 2292–2298(2002).
    [CrossRef]
  13. P. E. Ciddor, “Refractive index of air: 3. The roles of CO2, H2O, and refractivity virials: erratum,” Appl. Opt. 41, 7036 (2002).
    [CrossRef]
  14. J. H. Old, L. Gentili, and E. R. Peck, “Dispersion of carbon dioxide,” J. Opt. Soc. Am. 61, 89–90 (1971).
    [CrossRef]
  15. E. R. Peck and K. Reeder, “Dispersion of air,” J. Opt. Soc. Am. 62, 958–962 (1972).
    [CrossRef]
  16. H. Barrell and J. E. J. Sears, “Refraction and dispersion of air for visible spectrum,” Phil. Trans. R. Soc. London A 238, 1–62(1939).
  17. C. W. Allen, Allen’s Astrophysical Quantities, 4th ed, A.N.Cox, ed. (Springer-Verlag, 2000).
  18. M. Born and E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).
  19. M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).
  20. R. J. Hill, S. F. Clifford, and R. S. Lawrence, “Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctutations,” J. Opt. Soc. Am. 70, 1192–1205 (1980).
    [CrossRef]
  21. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
  22. Y. A. Popov and R. L. Shvartsblat, “IR absorption coefficients and refractive indices of CO2 and steam,” High Temp. 12, 1047–1050 (1974).
  23. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, 1959).
  24. H. Raidt and D. H. Höhn, “Instantaneous intensity distribution in a focused laser beam at 0.63 μm and 10.6 μm propagating through the atmosphere.,” Appl. Opt. 14, 2747–2749(1975).
    [CrossRef]
  25. J. I. Davis, “Consideration of atmospheric turbulence in laser systems design,” Appl. Opt. 5, 139–147 (1966).
    [CrossRef]
  26. M. J. Barrett and D. K. Hollingsworth, “On the calculation of length scales for turbulent heat transfer correlation,” Trans. ASME 123, 878–883 (2001).
    [CrossRef]
  27. Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.
  28. K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).
  29. T. Chiba, “Spot dancing of the laser beam propagated through the turbulent atmosphere,” Appl. Opt. 10, 2456–2461(1971).
    [CrossRef]
  30. M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).
  31. R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
    [CrossRef]
  32. G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
    [CrossRef]
  33. V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).
  34. V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

2008 (5)

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

L. Sjöqvist, “Laser beam propagation in jet engine plume environments—a review,” Proc. SPIE 7115, 71150C (2008).

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47, 975–985 (2008).
[CrossRef]

2007 (1)

G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
[CrossRef]

2006 (2)

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

2002 (2)

2001 (1)

M. J. Barrett and D. K. Hollingsworth, “On the calculation of length scales for turbulent heat transfer correlation,” Trans. ASME 123, 878–883 (2001).
[CrossRef]

2000 (1)

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

1996 (1)

1980 (1)

1975 (2)

1974 (1)

Y. A. Popov and R. L. Shvartsblat, “IR absorption coefficients and refractive indices of CO2 and steam,” High Temp. 12, 1047–1050 (1974).

1972 (1)

1971 (2)

1966 (1)

1939 (1)

H. Barrell and J. E. J. Sears, “Refraction and dispersion of air for visible spectrum,” Phil. Trans. R. Soc. London A 238, 1–62(1939).

Allen, C. W.

C. W. Allen, Allen’s Astrophysical Quantities, 4th ed, A.N.Cox, ed. (Springer-Verlag, 2000).

Alwahabi, Z.

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

Andrews, L. C.

L. C. Andrews, Field Guide to Atmospheric Optics, SPIE Field Guides, J.E.Greivenkamp, ed. (SPIE Press, 2004).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

Barrell, H.

H. Barrell and J. E. J. Sears, “Refraction and dispersion of air for visible spectrum,” Phil. Trans. R. Soc. London A 238, 1–62(1939).

Barrett, M. J.

M. J. Barrett and D. K. Hollingsworth, “On the calculation of length scales for turbulent heat transfer correlation,” Trans. ASME 123, 878–883 (2001).
[CrossRef]

Beland, R. R.

R. R. Beland, “Propagation through Atmospheric Optical Turbulence,” in The Infrared and Electro-Optical Systems Handbook (SPIE, 1993).

Berman, G. P.

G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
[CrossRef]

Bilger, R. W.

Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.

Born, M.

M. Born and E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Chen, Y.-C.

Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.

Chiba, T.

Chumak, A. A.

G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
[CrossRef]

Ciddor, P. E.

Clifford, S. F.

Cox, L. J.

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

Dally, B. D.

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Davis, J. I.

Dmitriev, D. I.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).

Dubovinsky, M.

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Fante, R. L.

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[CrossRef]

Filippov, G. N.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Gamache, R. R.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Gentili, L.

Goldman, A.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Gorshkov, V. N.

G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
[CrossRef]

Gustafsson, O.

M. Henriksson, L. Sjöqvist, and O. Gustafsson, “Experimental study of mid-IR laser beam wander close to a jet engine exhaust,” Proc. SPIE 6397, 639709 ((2006).

Henriksson, M.

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

M. Henriksson, L. Sjöqvist, and O. Gustafsson, “Experimental study of mid-IR laser beam wander close to a jet engine exhaust,” Proc. SPIE 6397, 639709 ((2006).

Hill, R. J.

Höhn, D. H.

Hollingsworth, D. K.

M. J. Barrett and D. K. Hollingsworth, “On the calculation of length scales for turbulent heat transfer correlation,” Trans. ASME 123, 878–883 (2001).
[CrossRef]

Inoue, S.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Ishizuka, S.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Isterling, W. M.

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

Ivanova, I. V.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).

Jacquemart, D.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Kalt, P. A. M.

Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.

Lawrence, R. S.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Masri, A. R.

Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

N., Y. Y.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Old, J. H.

Onuma, Y.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Peck, E. R.

Penner, S. S.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, 1959).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

Popov, Y. A.

Y. A. Popov and R. L. Shvartsblat, “IR absorption coefficients and refractive indices of CO2 and steam,” High Temp. 12, 1047–1050 (1974).

Porter, T.

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

Raidt, H.

Reeder, K.

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Rothman, L. S.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Sears, J. E. J.

H. Barrell and J. E. J. Sears, “Refraction and dispersion of air for visible spectrum,” Phil. Trans. R. Soc. London A 238, 1–62(1939).

Seiffer, D.

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

Sheremet’eva, T. A.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

Shimokuri, D.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Shvartsblat, R. L.

Y. A. Popov and R. L. Shvartsblat, “IR absorption coefficients and refractive indices of CO2 and steam,” High Temp. 12, 1047–1050 (1974).

Simeckova, M.

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

Sirazetdinov, V. S.

V. S. Sirazetdinov, “Experimental study and numerical simulation of laser beams propagation through the turbulent aerojet,” Appl. Opt. 47, 975–985 (2008).
[CrossRef]

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).

Sjöqvist, L.

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

L. Sjöqvist, “Laser beam propagation in jet engine plume environments—a review,” Proc. SPIE 7115, 71150C (2008).

M. Henriksson, L. Sjöqvist, and O. Gustafsson, “Experimental study of mid-IR laser beam wander close to a jet engine exhaust,” Proc. SPIE 6397, 639709 ((2006).

Starikov, A. D.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

Sucher, E.

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

Titterton, D. H.

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

D. H. Titterton, “Measurement of the distortion generated in a laser beam’s characteristics resulting from passage through an engine’s wake,” in RTO SET Symposium on “E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations” (IAFA, 1998), paper 42.

Varanisi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Wendelstein, N.

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

Wolf, E.

M. Born and E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).

Wright, D.

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

Yamamoto, K.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Yamashita, H.

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Appl. Opt. (7)

Heat Transf. Asian Res. (1)

K. Yamamoto, S. Inoue, H. Yamashita, D. Shimokuri, S. Ishizuka, and Y. Onuma, “PIV measurement and turbulence scale in turbulent combustion,” Heat Transf. Asian Res. 35, 501–512 (2006).

High Temp. (1)

Y. A. Popov and R. L. Shvartsblat, “IR absorption coefficients and refractive indices of CO2 and steam,” High Temp. 12, 1047–1050 (1974).

J. Opt. Soc. Am. (3)

J. Quant. Spectrosc. Radiat. Transfer (2)

M. Simeckova, D. Jacquemart, L. S. Rothman, R. R. Gamache, and A. Goldman, “Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database,” J. Quant. Spectrosc. Radiat. Transfer 98, 130–155(2006).

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanisi, “The Hitran Molecular Spectroscopic Database and Hawks (HITRAN Atmospheric Workstation): 1996 Edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).

Phil. Trans. R. Soc. London A (1)

H. Barrell and J. E. J. Sears, “Refraction and dispersion of air for visible spectrum,” Phil. Trans. R. Soc. London A 238, 1–62(1939).

Phys. Rev. E (1)

G. P. Berman, A. A. Chumak, V. N. Gorshkov, “Beam wandering in the atmosphere: The effect of partial coherence,” Phys. Rev. E 76, 056606 (2007).
[CrossRef]

Proc. IEEE (1)

R. L. Fante, “Electromagnetic beam propagation in turbulent media,” Proc. IEEE 63, 1669–1692 (1975).
[CrossRef]

Proc. SPIE (6)

V. S. Sirazetdinov, I. V. Ivanova, A. D. Starikov, D. H. Titterton, T. A. Sheremet’eva, G. N. Filippov, and Y. Y. N., “Experimental study of the structure of laser beams disturbed by turbulent stream of aircraft engine,” Proc. SPIE 3927, 397–405(2000).

M. Henriksson, L. Sjöqvist, D. Seiffer, N. Wendelstein, and E. Sucher, “Laser beam propagation experiments along and across a jet engine plume,” in Proc. SPIE 7115, 71150E (2008).

L. Sjöqvist, “Laser beam propagation in jet engine plume environments—a review,” Proc. SPIE 7115, 71150C (2008).

M. Henriksson, L. Sjöqvist, and O. Gustafsson, “Experimental study of mid-IR laser beam wander close to a jet engine exhaust,” Proc. SPIE 6397, 639709 ((2006).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “On the interaction of turbulence intensity and its scales with various diameter laser beams at high temperatures,” Proc. SPIE 7115, 71150J (2008).

W. M. Isterling, B. D. Dally, Z. Alwahabi, M. Dubovinsky, and D. Wright, “Propagation of 632.8 nm and 4.67 um laser beams in a turbulent flow containing CO2 and H2O at high temperatures,” in Proc. SPIE 7115, 71150H (2008).

Trans. ASME (1)

M. J. Barrett and D. K. Hollingsworth, “On the calculation of length scales for turbulent heat transfer correlation,” Trans. ASME 123, 878–883 (2001).
[CrossRef]

Other (10)

Y.-C. Chen, P. A. M. Kalt, A. R. Masri, and R. W. Bilger, “Feasibility study of integral length scale measurements in turbulent jet flows using DPIV,” in 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (Monash University, 1999), pp. 1–5.

S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities (Addison-Wesley, 1959).

C. W. Allen, Allen’s Astrophysical Quantities, 4th ed, A.N.Cox, ed. (Springer-Verlag, 2000).

M. Born and E. Wolf, Principles of Optics—Electromagnetic Theory of Propagation Interference and Diffraction of Light, 6th ed. (Pergamon, 1980).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. (SPIE, 2005).

L. C. Andrews, Field Guide to Atmospheric Optics, SPIE Field Guides, J.E.Greivenkamp, ed. (SPIE Press, 2004).

R. R. Beland, “Propagation through Atmospheric Optical Turbulence,” in The Infrared and Electro-Optical Systems Handbook (SPIE, 1993).

W. M. Isterling, L. J. Cox, M. Dubovinsky, D. H. Titterton, and T. Porter, “Laser interaction with jet engine induced turbulence,” presented at the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (2005).

D. H. Titterton, “Measurement of the distortion generated in a laser beam’s characteristics resulting from passage through an engine’s wake,” in RTO SET Symposium on “E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out-of-Area Operations” (IAFA, 1998), paper 42.

V. S. Sirazetdinov, D. I. Dmitriev, I. V. Ivanova, and D. H. Titterton, “Random wanderings of laser beams under the effect of a turbulent jet of an aero-engine,” Proc. SPIE 4678, 115–123 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of apparatus used to produce the turbulent flows at high temperatures.

Fig. 2
Fig. 2

Sketch of optical setup. Laser 1 , 4.67 μm 100 kHz ; Laser 2 , 632.8 nm CW; BS, beam splitter; L, lens; M, mirror; D, iris; C 1 , PbSe FPA camera; C 2 , ICCD camera.

Fig. 3
Fig. 3

Schematic of the experimental layout used for Particle Image Velocimetry (PIV). H 1 , Quantel Nd:YAG laser, 532 nm @ 10 Hz , F1-Q1; H 2 , Quantel Nd:YAG laser, 532 nm @ 10 Hz , F2-Q2; BS, beam splitter; L, lens; M, mirror.

Fig. 4
Fig. 4

Two consecutive images of the 632.8 nm beam after propagating through a 3 mm iris and a turbulent zone at 800 ° C .

Fig. 5
Fig. 5

Two consecutive images of the 4.67 μm beam after propagating through a 3 mm iris and a turbulent zone at 800 ° C .

Fig. 6
Fig. 6

Graphical presentation of the calculated integral length scale. In this case the integral length scale was calculated from the curve fit to be 2.86 mm , being the area under the curve.

Fig. 7
Fig. 7

Average standard deviation of beam displacement for the cases measured plotted against the integral length scale determined for the flow conditions.

Fig. 8
Fig. 8

Curve fit to the measured standard deviation of beam displacement for the 632.8 nm beam over a range of temperature gradients (where Tmax is the peak temperature of the flow and Tamb the temperature of the ambient laboratory air).

Fig. 9
Fig. 9

Curve fit to the measured standard deviation of beam displacement for the 4.67 μm beam over a range of temperature gradients (where Tmax is the peak temperature of the flow and Tamb the temperature of the ambient laboratory air).

Fig. 10
Fig. 10

Integrated value of the structure constant, C n 2 , plotted as a function of the refractive index contrast for the 632.8 nm and 4.67 μm beam wavelength series.

Tables (2)

Tables Icon

Table 1 Showing Volume Fraction of Water Present in the Flow at Various Temperatures

Tables Icon

Table 2 Coefficients for the Beam Displacement Fitting Function

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

( n co 2 1 ) 10 8 = 154.489 0.0584738 σ 2 + 8309192.7 210.92417 σ 2 + 287641.9 60.122959 σ 2 ,
( n dry 1 ) 10 8 = 5792015 238.1085 σ 2 + 167917 57.362 σ 2 .
( n w 1 ) 10 8 = 1.017 ( 295.235 + 2.6422 σ 2 0.032380 σ 4 + 0.004028 σ 6 ) .
n 2 1 = N e 2 ε 0 m s f s ω s 2 ω 2 ,
d = 2.44 λ L D ,
f ( Δ r ) = v ( r , x ) v ( r + Δ r , x ) ¯ v ( r , x ) 2 ¯ ,
v = v U ¯ ,
σ 2 4.34 ( L D ) 1 / 3 ( 3 L 8 / 3 C n 0 2 8 + Z 5 / 3 0 l C n e 2 ( ξ ) d ξ ) ,
C T = [ ( T 1 T 2 ) 2 ¯ ] 1 / 2 r 1 / 3 ( m 1 / 3 ) .
C n = ( 79 P / T 2 ) 10 6 C T ( m 1 / 3 ) ,
σ = a b + ( 1 / T ) 2 ,
I c = 0 1 C n e 2 ( ξ ) d ξ Z 5 / 3 ( σ 2 4.34 ( L / D ) 1 / 3 3 L 8 / 3 C n 0 2 8 ) ,

Metrics