Abstract

We demonstrate a high-power, continuous-wave (cw), single-frequency green source based on single-pass second-harmonic generation of a Yb-fiber laser in MgO:sPPLT as a viable pump source for a cw single-frequency Ti:sapphire ring laser. By careful design and optimization, the Ti:sapphire laser can provide as much as 2.3 W of cw single-frequency output across a 47 nm tuning range, limited by the reflectivity of the cavity mirrors. By implementing active stabilization of the laser frequency to an external reference, an ultrastable Fabry–Perot interferometer, we obtain a frequency stability better than 12 MHz over 10 min and continuous tunability greater than 180 MHz. Stable output power with peak-to-peak fluctuation of 5.4% over 75 min, in high spatial beam quality with M2<1.34, is achieved.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  2. A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
    [CrossRef]
  3. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
    [CrossRef]
  4. T. L. Boyd and H. J. Kimble, “Frequency stabilization of a continuous-wave Ti:sapphire laser,” Opt. Lett. 16, 808–810 (1991).
    [CrossRef]
  5. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16, 581–583 (1991).
    [CrossRef]
  6. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34, 3334–3336 (2009).
    [CrossRef]
  7. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
    [CrossRef]
  8. J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photon. 4, 289 (2010).
    [CrossRef]
  9. G. K. Samanta, S. C. Kumar, and M. Ebrahim-Zadeh, “Stable, 9.6 W, continuous-wave, single-frequency, fiber-based green source at 532 nm,” Opt. Lett. 34, 1561–1563 (2009).
    [CrossRef]
  10. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009).
    [CrossRef]
  11. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35, 3513–3515 (2010).
    [CrossRef]
  12. G. K. Samanta, S. C. Kumar, R. Das, and M. Ebrahim-Zadeh, “Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm,” Opt. Lett. 34, 2255–2257 (2009).
    [CrossRef]
  13. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50, 215–219 (2012).
    [CrossRef]

2012 (1)

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50, 215–219 (2012).
[CrossRef]

2010 (2)

2009 (4)

2008 (1)

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

1991 (2)

1989 (1)

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

1988 (1)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

1986 (1)

Alfrey, A. J.

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

Boyd, T. L.

Burns, D.

Chilla, J.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Coadou, E.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Das, R.

Devi, K.

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50, 215–219 (2012).
[CrossRef]

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency,” Opt. Lett. 35, 3513–3515 (2010).
[CrossRef]

Ebrahim-Zadeh, M.

Finch, A.

Fry, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Harrison, J.

Heritier, J. M.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Kafka, J. D.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photon. 4, 289 (2010).
[CrossRef]

Kemp, A. J.

Kimble, H. J.

Klein, J.

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photon. 4, 289 (2010).
[CrossRef]

Kumar, S. C.

Maclean, A. J.

Moulton, P. F.

Petersen, S.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Resan, B.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Rines, D. M.

Rines, G. A.

Roth, P. W.

Samanta, G. K.

Schulz, P. A.

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

Thomas, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Tulloch, W.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Viselga, R.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Walther, P.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. J. Alfrey, “Modeling of longitudinally pumped cw Ti:sapphire laser oscillators,” IEEE J. Quantum Electron. 25, 760–766 (1989).
[CrossRef]

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

J. Klein and J. D. Kafka, “The Ti:sapphire laser: the flexible research tool,” Nat. Photon. 4, 289 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50, 215–219 (2012).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J. M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the fiber-laser-based green-pumped cw Ti:sapphire ring laser. FI, Faraday isolator; λ/2, half-wave plate; PBS, polarizing beam splitter; L, lenses; M, mirrors; OC, output coupler; PZT, piezoelectric transducer; BRF, birefringent filter; Det., detector.

Fig. 2.
Fig. 2.

(a) Ti:sapphire laser output power as a function of pump beam waist in X-cavity configuration. (b) Power scaling characteristics of Ti:sapphire ring laser in free-running operation, as well as with the intracavity elements (BRF, optical diode, and etalon).

Fig. 3.
Fig. 3.

(a) Extracted power and output coupler transmission of the Ti:sapphire ring laser across the tuning range. (b) Single-frequency spectrum of the Ti:sapphire ring laser output recorded by a scanning Fabry–Perot interferometer (FSR=1GHz, finesse=400) at 812 nm.

Fig. 4.
Fig. 4.

Frequency stability of the Ti:sapphire ring laser with stabilization to (a) the homemade super-Invar Fabry–Perot cavity, and (b) the commercial Fabry–Perot interferometer, and without stabilization.

Fig. 5.
Fig. 5.

Continuous tuning of the Ti:sapphire ring laser at 816 nm at a rate of 181 MHz in 5 s.

Fig. 6.
Fig. 6.

Power stability of the Ti:sapphire output at 2.25 W recorded over a period of 70 min. Inset: far-field energy distribution of the Ti:sapphire ring laser output beam at 812 nm.

Metrics