Abstract

A low-cost pulsed N2-laser has been used to successfully demonstrate the formation of self-organized conical microtexture in Si. The process is demonstrated in vacuum environment to avoid the use of SF6 gas and sulfur incorporation. The microtexture is formed with an average structure height of 15um, base diameter 10μm, and tip-to-tip separation 8μm. Energy dispersive x-ray spectroscopy of individual conelike structure shows that the material remains free from impurity incorporation. We have shown that the laser-induced-damage-related absorption can be successfully restored after an hour annealing at 1000 °C, making the material an ideal candidate for photovoltaic and other photonic applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
    [CrossRef]
  2. B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).
  3. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
    [CrossRef]
  4. V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultra low reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
    [CrossRef]
  5. A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
    [CrossRef]
  6. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
    [CrossRef]
  7. C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
    [CrossRef]
  8. B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A 89, 663–666 (2007).
  9. D. Mills and K. W. Kolasinski, “Laser-etched silicon pillars and their porosification,” J. Vac. Sci. Technol. A 22, 1647–1651(2004).
    [CrossRef]
  10. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
    [CrossRef]
  11. V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
    [CrossRef]
  12. B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
    [CrossRef]
  13. M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
    [CrossRef]
  14. B. K. Nayak and M. C. Gupt/a, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010).
    [CrossRef]
  15. D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
    [CrossRef]
  16. B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
    [CrossRef]
  17. M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
    [CrossRef]
  18. V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
    [CrossRef]
  19. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).
  20. D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
    [CrossRef]
  21. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
  22. F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

2011 (2)

V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
[CrossRef]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

2010 (4)

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultra low reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupt/a, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

2008 (2)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

2007 (3)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A 89, 663–666 (2007).

2005 (1)

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

2004 (4)

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

D. Mills and K. W. Kolasinski, “Laser-etched silicon pillars and their porosification,” J. Vac. Sci. Technol. A 22, 1647–1651(2004).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

2001 (1)

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

2000 (2)

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

1999 (2)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).

A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
[CrossRef]

1996 (1)

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Alexandrou, I.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Amaratungab, G. A. J.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Aziz, M. J.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

Bassam, M. A.

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

Carey, J. E.

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Coster, H.

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

Cote, C. Y.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Crouch, C. H.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Ducatib, C.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Farrell, R. M.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

Fotakisa, C.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Fowlkes, J.

A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
[CrossRef]

Fowlkes, J. D.

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).

Friend, C. M.

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Genin, F. Y.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

Gothoskar, P.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Gupt/a, M. C.

B. K. Nayak and M. C. Gupt/a, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010).
[CrossRef]

Gupta, M. C.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultra low reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A 89, 663–666 (2007).

Gupta, Mool C.

V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

Hernandez-Pozos, J.

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

Ikhlef, A.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Iyengar, V. V.

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultra low reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
[CrossRef]

Jiang, Z.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Karger, A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Kieffer, J.-C.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Kolasinski, K.

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

Kolasinski, K. W.

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

D. Mills and K. W. Kolasinski, “Laser-etched silicon pillars and their porosification,” J. Vac. Sci. Technol. A 22, 1647–1651(2004).
[CrossRef]

Levinson, J. A.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Lowndes, D.

A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
[CrossRef]

Lowndes, D. H.

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).

Manousakia, A.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Mazur, E.

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

Mills, D.

D. Mills and K. W. Kolasinski, “Laser-etched silicon pillars and their porosification,” J. Vac. Sci. Technol. A 22, 1647–1651(2004).
[CrossRef]

Moghimi, A.

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

Nayak, B. K.

V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
[CrossRef]

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Ultra low reflectance metal surfaces by ultrafast laser texturing,” Appl. Opt. 49, 5983 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupt/a, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A 89, 663–666 (2007).

Neumeistera, A.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Palmer, E.

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

Parvin, P.

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

Pedraza, A.

A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
[CrossRef]

Pedraza, A. J.

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
[CrossRef]

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).

Raksi, F.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Riedel, D.

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

Sajad, B.

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

Sheehy, M.

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Warrender, J. M.

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

Wilson, K. R.

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

Winston, L.

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

Wu, C.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

Youkin, R.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Zergiotia, I.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Zhao, L.

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Zorba, V.

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (4)

B. K. Nayak and M. C. Gupta, “Femtosecond-laser-induced-crystallization and simultaneous formation of light trapping microstructures in thin a-Si:H films,” Appl. Phys. A 89, 663–666 (2007).

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation,” Appl. Phys. A 90, 399–402 (2008).
[CrossRef]

D. Riedel, J. Hernandez-Pozos, E. Palmer, and K. Kolasinski, “Fabrication of ordered arrays of silicon cones by optical diffraction in ultrafast laser etching with SF6,” Appl. Phys. A 78, 381–385 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).

Appl. Phys. A. (1)

A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Self-organized silicon microcolumn arrays generated by pulsed laser irradiation,” Appl. Phys. A. 69, S731–S734 (1999).

Appl. Phys. Lett. (3)

A. Pedraza, J. Fowlkes, and D. Lowndes, “Silicon microcolumn arrays grown by nanosecond pulsed-excimer laser irradiation,” Appl. Phys. Lett. 74, 2322–2324 (1999).
[CrossRef]

C. H. Crouch, J. E. Carey, J. M. Warrender, M. J. Aziz, E. Mazur, and F. Y. Genin, “Comparision of structure and properties of femtosecond and nanosecond laser-structured silicon,” Appl. Phys. Lett. 84, 1850–1852(2004).
[CrossRef]

C. Wu, C. H. Crouch, L. Zhao, J. E. Carey, R. Youkin, J. A. Levinson, E. Mazur, R. M. Farrell, P. Gothoskar, and A. Karger, “Near-unity below-band-gap absorption by microstructured silicon,” Appl. Phys. Lett. 78, 1850–1852(2001).
[CrossRef]

Appl. Surf. Sci. (3)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Ultrafast-laser-assisted chemical restructuring of silicon and germanium surfaces,” Appl. Surf. Sci. 253, 6580–6583 (2007).
[CrossRef]

M. A. Bassam, P. Parvin, B. Sajad, A. Moghimi, and H. Coster, “Measurement of optical and electrical properties of silicon microstructuring induced by ArF excimer laser at SF6 atmosphere,” Appl. Surf. Sci. 254, 2621–2628 (2008).
[CrossRef]

D. H. Lowndes, J. D. Fowlkes, and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154, 647–658 (2000).
[CrossRef]

Chem. Mater. (1)

M. Sheehy, L. Winston, J. E. Carey, C. M. Friend, and E. Mazur, “ Role of the background gas in the morphology and optical properties of laser-microstructured silicon,” Chem. Mater. 17, 3582–3586 (2005).
[CrossRef]

J. Chem. Phys. (1)

F. Raksi, K. R. Wilson, Z. Jiang, A. Ikhlef, C. Y. Cote, and J.-C. Kieffer, “Ultrafast x-ray absorption probing of a chemical reaction,” J. Chem. Phys. 104, 6066–6069 (1996).

J. Vac. Sci. Technol. A (1)

D. Mills and K. W. Kolasinski, “Laser-etched silicon pillars and their porosification,” J. Vac. Sci. Technol. A 22, 1647–1651(2004).
[CrossRef]

Nanotechnology (1)

B. K. Nayak, M. C. Gupta, and K. W. Kolasinski, “Spontaneous formation of nanospiked microstructures in germanium by femtosecond laser irradiation,” Nanotechnology 18, 195302 (2007).
[CrossRef]

Opt. Lasers Eng. (2)

B. K. Nayak and M. C. Gupt/a, “Ultrafast laser-induced self-organized conical micro/nano surface structures and their origin,” Opt. Lasers Eng. 48, 966–973 (2010).
[CrossRef]

B. K. Nayak and M. C. Gupta, “Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation,” Opt. Lasers Eng. 48, 940–949 (2010).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

B. K. Nayak, V. V. Iyengar, and M. C. Gupta, “Efficient light trapping in silicon solar cells by ultrafast-laser-induced self-assembled micro/nano structures,” Prog. Photovolt. Res. Appl. 19, 631–639 (2011).

Solar Energy Mater. Solar Cells (2)

V. V. Iyengar, B. K. Nayak, and M. C. Gupta, “Optical properties of silicon light trapping structures for photovoltaics,” Solar Energy Mater. Solar Cells 94, 2251–2257(2010).
[CrossRef]

V. V. Iyengar, B. K. Nayak, and Mool C. Gupta, “Material properties of ultrafast laser textured silicon for photovoltaics,” Solar Energy Mater. Solar Cells 95, 2745–2751(2011).
[CrossRef]

Thin Solid Films (1)

V. Zorba, I. Alexandrou, I. Zergiotia, A. Manousakia, C. Ducatib, A. Neumeistera, C. Fotakisa, and G. A. J. Amaratungab, “Laser microstructuring of Si surfaces for low-threshold field-electron Emission,” Thin Solid Films 453, 492–495 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

SEM image of (a) laser treated sample in vacuum for laser fluence of 2J/cm2 and average number of laser shots 100, (b) Higher magnification image of (a), (c) laser treated sample in 1000 mbar SF6 for laser fluence 2J/cm2 and average number of laser shots 100, (d) Higher magnification image of (c), (e) Cross-sectional image of (a).

Fig. 2.
Fig. 2.

Developments of microtexture formation in vacuum for a given fluence of 1.6J/cm2 at different numbers of laser shots (a) 1, (b) 10, (c) 50, (d) 60, (e) 70, (f) 80, (g) 90, (h) higher magnification image of (g).

Fig. 3.
Fig. 3.

SEM images of laser treated surfaces for different numbers of average laser shots. Laser treatment is carried out in vacuum. Average number of shots for images is (a) 1, (b) 10, (c) 20, (d) 30, (e) 40, (f) 50, (g) 60, (h) 70, (i) 80, (j) 90, (k) 100. (l) A scanned line where the average number of laser shots is kept 100. The scale bar on the images from (a)–(k) is 25 μm. The width of the scanned line shown in (l) is 128.5 µm. Laser fluence is kept at 2J/cm2.

Fig. 4.
Fig. 4.

Dependence of average microtexture height on number of laser shots. Average number of laser shots corresponding to each scan line is indicated in the figure.

Fig. 5.
Fig. 5.

EDX maps acquired from the cross-sectioned conelike microstructure: (a) SEM image of the cross-section of conelike microstructure. EDX mapped region is shown as a rectangle (b) silicon map, (c) oxygen map, and (d) carbon map (e) spectrum acquired over the rectangular region shown in (a).

Fig. 6.
Fig. 6.

X-ray diffraction spectrum of laser textured Si (100).

Fig. 7.
Fig. 7.

SEM images of laser treated samples exposed to an average of 100 laser shots at fluence of 2J/cm2 prepared in (a) 1000 mbar N2 and (b) in air.

Fig. 8.
Fig. 8.

Total integrated scattering as a function of angle for (a) λ=633nm, (b) λ=1615nm.

Metrics