Abstract

The sensitivity of an induced transmission filter (ITF) design to deposition errors is analyzed for the case of a single metal layer ITF. Theoretical knowledge of the least and most sensitive layers within the ITF design improves deposition reliability when using broadband optical monitoring of only the dielectric part of such metal–dielectric filters. Linearly variable ITFs have been successfully fabricated using this developed approach for error compensation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
    [Crossref]
  2. A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
    [Crossref] [PubMed]
  3. A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
    [Crossref]
  4. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957).
    [Crossref]
  5. P. H. Lissberger, “Coatings with induced transmission,” Appl. Opt. 20, 95–104 (1981).
    [Crossref] [PubMed]
  6. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. I. Theoretical description,” Appl. Opt. 31, 3821–3835 (1992).
    [Crossref] [PubMed]
  7. B. T. Sullivan and J. A. Dobrowolski, “Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system,” Appl. Opt. 32, 2351–2360(1993).
    [Crossref] [PubMed]
  8. B. T. Sullivan and K. L. Byrt, “Metal/dielectric transmission interference filters with low reflectance. 2. Experimental results,” Appl. Opt. 34, 5684–5694 (1995).
    [Crossref] [PubMed]

2008 (2)

A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
[Crossref] [PubMed]

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

1995 (1)

1993 (1)

1992 (1)

1981 (1)

1957 (1)

Berning, P. H.

Bulir, J.

A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
[Crossref] [PubMed]

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

Byrt, K. L.

Dobrowolski, J. A.

Harnisch, B.

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

Lissberger, P. H.

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
[Crossref]

Piegari, A.

A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
[Crossref] [PubMed]

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

Sullivan, B. T.

Sytchkova, A. K.

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

A. Piegari, J. Bulir, and A. K. Sytchkova, “Variable narrow-band transmission filters for spectrometry from space. 2. Fabrication process,” Appl. Opt. 47, C151–C156 (2008).
[Crossref] [PubMed]

Turner, A. F.

Wuttig, A.

A. Piegari, A. K. Sytchkova, J. Bulir, B. Harnisch, and A. Wuttig, “Thin-film filters for a high resolution miniaturized spectrometer,” Proc. SPIE 7101, 710113 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmittance of a 21 layer metal–dielectric filter having a 5% error in thickness in layers adjacent to the silver layer: (a) both layers are thicker than designed; (b) one is thicker and one is thinner than designed. Dashed curve corresponds to the designed curve.

Fig. 2
Fig. 2

Transmittance of the respective all-dielectric stacks of the metal–dielectric filters shown in Fig. 1 (20 layers). Dashed curve corresponds to the designed curve. Note that, in (b), the unperturbed curve and that corresponding to the stack with thickness errors coincide due to perfect error auto-compensation.

Fig. 3
Fig. 3

Overall half-filter admittance change with dielectric layer addition for a Ag / 0.92 L ( L H ) 5 structure with reference wavelength of 1000 nm .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n L 2 μ , n H 2 μ n L 2 , .
Y m + 1 = cos δ m + 1 Y m + i n m + 1 sin δ m + 1 cos δ m + 1 + i Y m n m + 1 sin δ m + 1 .
Y err = ( n H 2 n L 2 ) N m 1 { Y m + 1 , if     N m 1   is even 1 / Y m + 1 , if     N m 1   is odd ,
Y err = ( n L 2 n H 2 ) N m 1 { Y m + 1 , 1 / Y m + 1 , if     N m 1   is even if     N m 1   is odd ,
Y err = Y N 1 ( n H 2 n L 2 ) 2 N 2 m 1 1 1 ( 1 Y m 2 / n m + 1 2 ) cos 2 α m + 1 { 1 + i ( 1 Y m 2 / n m + 1 2 2 Y m 2 / n m + 1 2 ) sin 2 α m + 1 } ,
f ( m + 1 ) = ( n H 2 n L 2 ) 2 ( N 1 ) ( n H 2 n L 2 ) 2 ( m + 1 ) 1 , for     m N ,
f ( m + 1 ) = ( n H 2 n L 2 ) 2 N ( n H 2 n L 2 ) 2 ( m + 1 ) 1 , for     m N 1 .

Metrics