Abstract

An Si/SiO2 multilayer with zigzag layer interfaces is fabricated on a patterned silica substrate using the autocloning method. The multilayer is designed to function as multichannel long-wave pass type edge filters with various cutoff wavelengths. A cutoff wavelength shift of the order of 190nm in the near infrared region (13001500nm) is experimentally demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636(1997).
    [CrossRef]
  2. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
    [CrossRef] [PubMed]
  3. N. Destouches, J.-C. Pommier, O. Parriaux, T. Clausnitzer, N. Lyndin, and S. Tonchev, “Narrow band resonant grating of 100% reflection under normal incidence,” Opt. Express 14, 12613–12622 (2006).
    [CrossRef] [PubMed]
  4. R. C. Rumpf, A. Mehta, P. Srinivasan, and E. G. Johnson, “Design and optimization of space-variant photonic crystal filters,” Appl. Opt. 46, 5755–5761 (2007).
    [CrossRef] [PubMed]
  5. S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
    [CrossRef]
  6. T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46, 4963–4967 (2007).
    [CrossRef] [PubMed]
  7. Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25, 499–503 (2007).
    [CrossRef]
  8. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).
  9. T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
    [CrossRef]
  10. Y. Ohtera, Y. Inoue, and T. Kawashima, “Sharp edge wavelength filters utilizing multilayer photonic crystals,” Opt. Express 17, 6347–6356 (2009).
    [CrossRef] [PubMed]
  11. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
    [CrossRef]
  12. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).
  13. Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47, 4827–4834 (2008).
    [CrossRef]
  14. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
    [CrossRef]
  15. Y. Ohtera, D. Kurniatan, and H. Yamada, “Antireflection coatings for multilayer-type photonic crystals,” Opt. Express 18, 12249–12261 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47, 4827–4834 (2008).
[CrossRef]

2007 (4)

2006 (1)

2000 (1)

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

1999 (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

1997 (2)

1996 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Ahmed, M. A.

Araki, T.

Cheng, C.-C.

Chou, H.-P.

Clausnitzer, T.

Destouches, N.

Fainman, Y.

Fan, S.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Graf, T.

Inoue, Y.

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

Johnson, E. G.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

Kawakami, S.

Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel photonic crystal wavelength filter array for near-infrared wavelengths,” J. Lightwave Technol. 25, 499–503 (2007).
[CrossRef]

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46, 4963–4967 (2007).
[CrossRef] [PubMed]

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[CrossRef]

Kawashima, T.

Y. Ohtera, Y. Inoue, and T. Kawashima, “Sharp edge wavelength filters utilizing multilayer photonic crystals,” Opt. Express 17, 6347–6356 (2009).
[CrossRef] [PubMed]

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

Kurniatan, D.

Lyndin, N.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

Mehta, A.

Miura, K.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Ohtera, Y.

Onuki, T.

Parriaux, O.

Pommier, J.-C.

Rumpf, R. C.

Salvekar, A. A.

Sasaki, Y.

Sato, T.

T. Sato, T. Araki, Y. Sasaki, T. Tsuru, T. Tadokoro, and S. Kawakami, “Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements,” Appl. Opt. 46, 4963–4967 (2007).
[CrossRef] [PubMed]

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

Scherer, A.

Srinivasan, P.

Sun, P.-C.

Tadokoro, T.

Taflove, A.

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

Tonchev, S.

Tsuru, T.

Tyan, R.-C.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Vogel, M. M.

Voss, A.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

Xu, F.

Yamada, H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication processes of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Electron. Lett. (2)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electron. Lett. 35, 1271–1272 (1999).
[CrossRef]

S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Ohtera, “Calculating the complex photonic band structure by the finite-difference time-domain based method,” Jpn. J. Appl. Phys. 47, 4827–4834 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Large omnidirectional band gaps in metallodielectric photonic crystals,” Phys. Rev. B 54, 11245–11251 (1996).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, 2nd ed. (Princeton University Press, 2008).

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of a multichannel autocloned photonic crystal wavelength filter. “a” and “Λ” denote the thickness of a pair of high- and low-index films and horizontal lattice constant, respectively.

Fig. 2
Fig. 2

Complex dispersion relation of even symmetric TE modes in an infinitely extending PhC. (a) Real part of the wavenumber (propagation constant). (b) Imaginary part of the wavenumber (decay constant). The short wavelength edge of the second passband is utilized as a long-wave pass type edge filter. Assumed parameters are refractive index: n ( Si ) = 3.5 ; n ( Si O 2 ) = 1.47 ; thicknesses of Si and Si O 2 layers: both 210 nm ; horizontal lattice constant: Λ = 415 nm .

Fig. 3
Fig. 3

Calculated transmission characteristics of PhCF with various horizontal lattice constants. The thicknesses of the Si and Si O 2 layers are both 210 nm , and the total number of layers is 16, excluding the AR layers. Solid and dotted lines denote with and without AR layers.

Fig. 4
Fig. 4

Picture of the fabricated PhCF. Mosaic pattern filters consisting of miniature PhCFs and arrayed uniform PhCFs are formed on one silica substrate.

Fig. 5
Fig. 5

SEM images of the cross sections of PhCF regions . Bright and dark layers correspond to Si and Si O 2 , respectively.

Fig. 6
Fig. 6

Measured transmission characteristics of PhCF with various horizontal lattice constants. The total number of layers is 20, including the AR layers.

Fig. 7
Fig. 7

Calculated transmission spectra of PhCF. The shape of each layer interface was determined using the SEM image of Λ = 430 nm in Fig. 5. The effect of voids in the grooves of the grating was also taken into account. The right-hand side illustrates the layer model for the Λ = 430 nm region.

Tables (2)

Tables Icon

Table 1 Sputtering Conditions for the Main PhC Layers a

Tables Icon

Table 2 Measured Transmittance of TE Modes in the Stop Band a

Metrics