Abstract

Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gallais and M. Commandré, “Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces,” Appl. Opt. 45, 1416–1424 (2006).
    [CrossRef] [PubMed]
  2. J. Cifre and J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
    [CrossRef]
  3. U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
    [CrossRef]
  4. B. Li, H. Blaschke, and D. Ristau, “Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings,” Appl. Opt. 45, 5827–5831(2006).
    [CrossRef] [PubMed]
  5. L. Jensen, I. Balasa, H. Blaschke, and D. Ristau, “Novel technique for the determination of hydroxyl dstributions in fused silica,” Opt. Express 17, 17144–17149(2009).
    [CrossRef] [PubMed]
  6. A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
    [CrossRef]
  7. H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
    [CrossRef]
  8. M. Guntau and W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
    [CrossRef]
  9. C. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
    [CrossRef] [PubMed]
  10. W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).
  11. D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
    [CrossRef]
  12. C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
    [CrossRef]

2009

2008

2007

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
[CrossRef]

2006

2005

W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

2001

A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

2000

M. Guntau and W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

1998

J. Cifre and J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

1996

U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
[CrossRef]

1995

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Balasa, I.

Blaschke, H.

Bublitz, S.

Cifre, J.

J. Cifre and J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Commandré, M.

Coper, C.

A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Dam, N.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

de Vries, H. S. M.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Gallais, L.

Gross, T.

U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
[CrossRef]

Guntau, M.

M. Guntau and W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

Harren, F. J. M.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Jensen, L.

Klett, U.

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

Kufert, S.

C. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
[CrossRef] [PubMed]

C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
[CrossRef]

W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

Li, B.

Marcano, A.

A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Melikechi, N.

A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

Mühlig, C.

C. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
[CrossRef] [PubMed]

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
[CrossRef]

W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

Reuss, J.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Ristau, D.

Roger, J. P.

J. Cifre and J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Schönfeld, D.

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

Sikkens, C.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Thomas, S.

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

Triebel, W.

C. Mühlig, W. Triebel, S. Kufert, and S. Bublitz, “Characterization of low losses in optical thin films and materials,” Appl. Opt. 47, C135–C142 (2008).
[CrossRef] [PubMed]

C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
[CrossRef]

W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

M. Guntau and W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

van Lieshout, M. R.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

Welling, H.

U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
[CrossRef]

Willamowski, U.

U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Marcano, C. Coper, and N. Melikechi, “High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method,” Appl. Phys. Lett. 78, 3415–3417 (2001).
[CrossRef]

J. Non-Cryst. Solids

C. Mühlig, W. Triebel, and S. Kufert, “Coefficients of stationary ArF laser pulse absorption in fused silica (type III),” J. Non-Cryst. Solids 353, 542–545 (2007).
[CrossRef]

Opt. Express

Proc. SPIE

W. Triebel, C. Mühlig, and S. Kufert, “Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings,” Proc. SPIE 5965, 499–508 (2005).

D. Schönfeld, U. Klett, C. Mühlig, and S. Thomas, “Measurement of initial absorption of fused silica at 193 nm using laser induced deflection technique (LID),” Proc. SPIE 6720, 67201A (2007).
[CrossRef]

U. Willamowski, T. Gross, D. Ristau, and H. Welling, “Calorimetric measurement of optical absorption at 532 nm and 1064 nm according to ISO/DIS 11551,” Proc. SPIE 2870, 483–494 (1996).
[CrossRef]

Rev. Sci. Instrum.

H. S. M. de Vries, N. Dam, M. R. van Lieshout, C. Sikkens, F. J. M. Harren, and J. Reuss, “A real-time, nonintrusive trace gas detector based on laser photothermal deflection,” Rev. Sci. Instrum. 66, 4655–4664 (1995).
[CrossRef]

M. Guntau and W. Triebel, “A novel method to measure bulk absorption in optically transparent materials,” Rev. Sci. Instrum. 71, 2279–2282 (2000).
[CrossRef]

Thin Solid Films

J. Cifre and J. P. Roger, “Absolute infrared absorption measurements in optical coatings using mirage detection,” Thin Solid Films 320, 198–205 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Sketch of the LID measurement principle including calculated isolines of temperature and refractive index for fused silica as well as the probe beam propagation.

Fig. 2
Fig. 2

Electrical calibration for a fused silica substrate. By varying the electrical power over 2 orders of magnitude, the linearity between the LID signal and sample heating is proven. The inset shows a picture of a calibration sample with geometry 20 mm × 20 mm × 20 mm , equipped with surface heaters to simulate surface absorption.

Fig. 3
Fig. 3

Picture of an advanced prototype of the LID absorption measurement setup.

Fig. 4
Fig. 4

Surface sensitive measurement concept: experimental results for the measurement of a single MgF 2 layer onto a CaF 2 substrate at the laser wavelength of 193 nm .

Fig. 5
Fig. 5

Numerical simulations: schematic view of the probe beam deflection angle α z due to the refractive index profile in an irradiated sample.

Fig. 6
Fig. 6

Schematic view of the two applied LID absorption measurement concepts for optical coatings. (a) Surface sensitive concept for transparent coatings: probe beam deflection in the same direction than the illumination (horizontal direction). (b) Concept for HR coatings: probe beam deflection in perpendicular direction to illumination (vertical direction).

Fig. 7
Fig. 7

Surface sensitive concept. (a) Electrical calibration for front and rear surface absorption as well as substrate absorption showing. (b) Experimental data and numerical simulation for the dependence of the LID measuring signal on the probe beam position along the sample height (see inset).

Fig. 8
Fig. 8

Numerical simulations: temporal LID signal development of identical thin film and substrate absorption for surface sensitive measuring concept.

Fig. 9
Fig. 9

Surface sensitive concept: comparison between absorption data of single SiO 2 and MgF 2 layers on CaF 2 substrates in dependence on their layer thickness. The linear fits are drawn to demonstrate the large differences in the interface absorptions (intersection with the y axis) obtained by different manufacturers.

Fig. 10
Fig. 10

Numerical simulations: LID signals for two different heating areas in dependence on the probe beam position along the sample height using the concept for measuring HR coatings.

Fig. 11
Fig. 11

Concept for HR coatings: Experimental results for the measurement of an HR coating onto fused silica substrate at the laser wavelength 1030 nm and a 0 ° AOI.

Fig. 12
Fig. 12

Concept for HR coatings: results for polarization and AOI dependent absorption measurements of an HR 45 ° coating at the laser wavelength of 193 nm .

Fig. 13
Fig. 13

Investigation of desorption and re-adsorption of hydrocarbons using an HR 0 ° coating at a laser wavelength of 193 nm in a nitrogen purged environment: (a) Experimental results for the laser induced desorption of hydrocarbons and (b) re-adsorption of hydrocarbons as a function of the time between consecutive laser irradiations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A = I LID F CAL · P L .
d L α Z L L n z d y ,
n ( r , t ) = n 0 + d n d T ̲ T ( r , t ) ,
α z d n d T L L T z d y .
k = A · λ 4 π ,

Metrics