Abstract

The cleaning process of optical substrates plays an important role during the manufacture of high-power laser coatings. Two kinds of substrates, fused silica and BK7 glass, and two cleaning processes, called process 1 and process 2 having different surfactant solutions and different ultrasonic cleaning param eters, are adopted to compare the influence of the ultrasonic cleaning technique on the substrates. The evaluation standards of the cleaning results include contaminant-removal efficiency, weak absorption, and laser-induced damage threshold of the substrates. For both fused silica and BK7, process 2 is more efficient than process 1. Because acid and alkaline solutions can increase the roughness of BK7, process 2 is unsuitable for BK7 glass cleaning. The parameters of the cleaning protocol should be changed depending on the material of the optical components and the type of contamination.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription