Abstract

Optical microcomponents are increasingly used in laser optical systems because of their many and novel industrial applications. These components are coated in order to enhance their optical performance, but optical characterizations are very difficult due to the shapes and small size. Thus, to perform this kind of measurement, special devices are needed. It is difficult to check component optical responses after manufacturing. Thus a new method, developed by the French Atomic Energy and Alternative Energies Commission, is proposed to fill this gap.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Facilities http://www.nist.gov/pml/div685/grp03/spectrophotometry_transfer.cfm.
  2. Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
    [CrossRef] [PubMed]
  3. G. J. Kopec, “Colorimetry as diagnostic tool in manufacture of antireflection coatings,” Proc. SPIE 4517, 236–241 (2001).
    [CrossRef]
  4. J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
    [CrossRef]
  5. R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
    [CrossRef]
  6. J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, "Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles," Appl. Opt. 45, 8874–8881 (2006).
    [CrossRef] [PubMed]
  7. H. Piombini and Ph. Voarino, “Device and process for measuring the characterisation by reflectometry,” U.S. patent 7,773,208 (6 December 2007).
  8. X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
    [CrossRef]
  9. H. Piombini and Ph. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46, 8609–8618 (2007).
    [CrossRef] [PubMed]
  10. H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
    [CrossRef]
  11. J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.
  12. H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
    [CrossRef]
  13. H. Piombini and L. Caillon, “Reflectance measurement of spherical samples,” Opt. Rev. 16, 571–574 (2009).
    [CrossRef]
  14. http://www.skf.com/skf/support/html/dictionary/dictionary.jsp?lang=en&site=CH.
  15. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983).
    [CrossRef] [PubMed]
  16. Thorlabs catalog, Vol.  20, pp. 626, 630, 764 (2009).
  17. T. Csendes, “Nonlinear parameter estimation by global optimization—Efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988).

2009 (1)

H. Piombini and L. Caillon, “Reflectance measurement of spherical samples,” Opt. Rev. 16, 571–574 (2009).
[CrossRef]

2008 (4)

Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
[CrossRef] [PubMed]

X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
[CrossRef]

H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
[CrossRef]

H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
[CrossRef]

2007 (1)

2006 (2)

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

J. Sancho-Parramon, A. Abdolvand, A. Podlipensky, G. Seifert, H. Graener, and F. Syrowatka, "Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles," Appl. Opt. 45, 8874–8881 (2006).
[CrossRef] [PubMed]

2001 (2)

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

G. J. Kopec, “Colorimetry as diagnostic tool in manufacture of antireflection coatings,” Proc. SPIE 4517, 236–241 (2001).
[CrossRef]

1988 (1)

T. Csendes, “Nonlinear parameter estimation by global optimization—Efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988).

1983 (1)

Abdolvand, A.

Bennett, J. M.

Bortoletto, F.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Bruynooghe, S.

H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
[CrossRef]

Caillon, L.

H. Piombini and L. Caillon, “Reflectance measurement of spherical samples,” Opt. Rev. 16, 571–574 (2009).
[CrossRef]

Csendes, T.

T. Csendes, “Nonlinear parameter estimation by global optimization—Efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988).

Dörfel, F.

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

Dubard, J.

Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
[CrossRef] [PubMed]

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Dubbeldam, C. M.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Elson, J. M.

Filtz, J. R.

Filtz, J.-R.

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Graener,

Grunwald, R.

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

Hameury, J.

Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
[CrossRef] [PubMed]

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Hudec, R.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Kopec, G. J.

G. J. Kopec, “Colorimetry as diagnostic tool in manufacture of antireflection coatings,” Proc. SPIE 4517, 236–241 (2001).
[CrossRef]

Marteau, D.

Nerreter, S.

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

Norrie, C.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Pina, L.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Piombini, H.

H. Piombini and L. Caillon, “Reflectance measurement of spherical samples,” Opt. Rev. 16, 571–574 (2009).
[CrossRef]

H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
[CrossRef]

Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
[CrossRef] [PubMed]

H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
[CrossRef]

H. Piombini and Ph. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46, 8609–8618 (2007).
[CrossRef] [PubMed]

H. Piombini and Ph. Voarino, “Device and process for measuring the characterisation by reflectometry,” U.S. patent 7,773,208 (6 December 2007).

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Podlipensky, A.

Prieto, E.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Rahn, J. P.

Ramsay-Howat, S.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Robertson, D. J.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Sabary, F.

Sancho-Parramon, J.

Schmoll, J.

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Schwirzke-Schaaf, S.

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

Seifert,

Soler, D.

H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
[CrossRef]

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Syrowatka, F.

Tomm, J. W.

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

Voarino, P.

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

Voarino, Ph.

H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
[CrossRef]

H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
[CrossRef]

Ph. Voarino, H. Piombini, F. Sabary, D. Marteau, J. Dubard, J. Hameury, and J. R. Filtz, “High-accuracy measurements of the normal specular reflectance,” Appl. Opt. 47, C303–C309 (2008).
[CrossRef] [PubMed]

H. Piombini and Ph. Voarino, “Apparatus designed for very accurate measurement of the optical reflection,” Appl. Opt. 46, 8609–8618 (2007).
[CrossRef] [PubMed]

H. Piombini and Ph. Voarino, “Device and process for measuring the characterisation by reflectometry,” U.S. patent 7,773,208 (6 December 2007).

Wang, Z.

X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
[CrossRef]

Zhao, Y.

X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
[CrossRef]

Zheng, X.

X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
[CrossRef]

Acta Cybernetica (1)

T. Csendes, “Nonlinear parameter estimation by global optimization—Efficiency and reliability,” Acta Cybernetica 8, 361–370 (1988).

Appl. Opt. (4)

New Astron. Rev. (1)

J. Schmoll, D. J. Robertson, C. M. Dubbeldam, F. Bortoletto, L. Pina, R. Hudec, E. Prieto, C. Norrie, and S. Ramsay-Howat, “Optical replication techniques for image slicers,” New Astron. Rev. 50, 263–266 (2006).
[CrossRef]

Opt. Rev. (1)

H. Piombini and L. Caillon, “Reflectance measurement of spherical samples,” Opt. Rev. 16, 571–574 (2009).
[CrossRef]

Proc. SPIE (5)

H. Piombini, S. Bruynooghe, and Ph. Voarino, “Spectral measurement in reflection on steeply aspheric surfaces,” Proc. SPIE 7102, 71021C (2008).
[CrossRef]

H. Piombini, D. Soler, and Ph. Voarino, “New device to measure the reflectivity on steeply curved surface,” Proc. SPIE 7018, 70181B (2008).
[CrossRef]

R. Grunwald, S. Nerreter, J. W. Tomm, S. Schwirzke-Schaaf, and F. Dörfel, “Automated high-accuracy measuring system for specular micro-reflectivity,” Proc. SPIE 4449, 111–118 (2001).
[CrossRef]

G. J. Kopec, “Colorimetry as diagnostic tool in manufacture of antireflection coatings,” Proc. SPIE 4517, 236–241 (2001).
[CrossRef]

X. Zheng, Z. Wang, and Y. Zhao, “An apparatus for the measurement of spectral specular reflectance of spot area in curved surfaces,” Proc. SPIE 7156, 71560B (2008).
[CrossRef]

Other (5)

Facilities http://www.nist.gov/pml/div685/grp03/spectrophotometry_transfer.cfm.

H. Piombini and Ph. Voarino, “Device and process for measuring the characterisation by reflectometry,” U.S. patent 7,773,208 (6 December 2007).

Thorlabs catalog, Vol.  20, pp. 626, 630, 764 (2009).

J. Dubard, J. Hameury, J.-R. Filtz, D. Soler, P. Voarino, and H. Piombini, “Normal reflectance measurement based on high reflectivity dielectric mirrors reference standard,” presented at Newrad, Daejeon, South Korea, 13–15 Oct., 2008.

http://www.skf.com/skf/support/html/dictionary/dictionary.jsp?lang=en&site=CH.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (26)

Fig. 1
Fig. 1

Experimental setup of CEA device.

Fig. 2
Fig. 2

Repeatability of self-focusing made on an aluminum mirror.

Fig. 3
Fig. 3

Comparison spectral responses of a standard mirror between NPL and CEA’s reflectometer.

Fig. 4
Fig. 4

40 mm × 40 mm Mapping of standard mirror at 500 nm showing the heterogeneities of this one.

Fig. 5
Fig. 5

40 mm × 40 mm mappings at 600 nm .

Fig. 6
Fig. 6

Difference between mappings (a) and (b).

Fig. 7
Fig. 7

Aim of the oversized condenser lens. If a condenser lens had a Φ Input diameter, the reflected ray would be lost. That is not the case with a condenser lens having a Φ Output diameter.

Fig. 8
Fig. 8

Schema for spherical surface.

Fig. 9
Fig. 9

Reflectance factor variation versus incidence angle.

Fig. 10
Fig. 10

Incidence mapping versus a ( x , y ) spot location. The incidence is less than 3 ° inside the black square.

Fig. 11
Fig. 11

Reflectance factor mapping at 633 nm for the ball bearing having a radius of 22 mm .

Fig. 12
Fig. 12

Photograph of our eight ball bearings.

Fig. 13
Fig. 13

Three measurements made on the 44.45 mm diameter ball bearing.

Fig. 14
Fig. 14

Measurement of the eight ball bearings with our reflectometer.

Fig. 15
Fig. 15

Photograph of a ball bearing by a Normaski microscope.

Fig. 16
Fig. 16

Scattered light versus wavelength for four roughness values (5, 7, 10, and 12 nm ).

Fig. 17
Fig. 17

Photograph of micromirror on its holder.

Fig. 18
Fig. 18

Three spectral responses and the associated fit of the measured micromirror.

Fig. 19
Fig. 19

Photograph of the measured microlens.

Fig. 20
Fig. 20

Molded aspherical broadband AR coating, according to Thorlabs Co. [16]. (A) 350 700 nm , (B) 650 1050 nm , (C) 1050 1620 nm .

Fig. 21
Fig. 21

Spectral response of C440TME-B lens measured by our reflectometer.

Fig. 22
Fig. 22

600 1050 nm AR-coated calcite according to Thorlabs Co. [16].

Fig. 23
Fig. 23

Spectrum 1 (gray triangle, supplier data) and theoretical response from reverse engineering (solid curve). Insertion: design 1a corresponding to theoretical curve.

Fig. 24
Fig. 24

Spectrum 2 (gray triangle, supplier data) and theoretical response from reverse engineering (solid curve). Insertion: design 2a corresponding to theoretical curve.

Fig. 25
Fig. 25

Spectral response of C440TME-B lens measured by our reflectometer (gray triangle) and theoretical one with a refinement procedure starting with design 1a (solid curve). Insertion: design 1b corresponding to refined structure.

Fig. 26
Fig. 26

Spectral response of C440TME-B lens measured by our reflectometer (gray triangle) and theoretical one with a refinement procedure starting with design 2a (solid curve). Insertion: design 2b corresponding to refined structure.

Tables (1)

Tables Icon

Table 1 Average Reflectance Versus Ball Bearing Diameter

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = K ( λ ) V Measurement ( λ ) V Measurement background ( λ ) V Reference ( λ ) V Reference background ( λ ) ,
ρ = 4 h f ϕ Output ϕ Input ,
TIS = diffuse reflectance specular + diffuse reflectance ,
TIS = ( 4 π δ λ ) 2 ,

Metrics