Abstract

For the 2010 Manufacturing Problem, the participants were required to produce a filter that had normal incidence transmittances of 0.001, 0.01, 0.1, and 0.96, respectively, in four separate 60nm wide bands in the 400 to 700nm wavelength region. The problem is not unlike those that need to be routinely solved in the telecommunication industry. Nine groups submitted a total of 11 different filters for the contest. The number of layers in the filters received ranged from 28 to 678, and the total metric thicknesses varied between 4,038 and 22,513nm. The transmittances of the filters were measured at two independent laboratories. Some of the performances were quite close to the specifications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “Topical meeting on optical interference coatings (OIC’ 2001): manufacturing problem,” Appl. Opt. 41, 3039–3052(2002).
    [CrossRef] [PubMed]
  2. J. A. Dobrowolski, S. Browning, M. R. Jacobson, and M. Nadal, “2004 Optical Society of America’s topical meeting on optical interference coatings: manufacturing problem,” Appl. Opt. 45, 1303–1311 (2006).
    [CrossRef] [PubMed]
  3. J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 topical meeting on optical interference coatings: manufacturing problem,” Appl. Opt. 47, C231–C245(2008).
    [CrossRef] [PubMed]
  4. R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.
  5. M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and opto-electronics,” Society of Vacuum Coaters 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), 179.
  6. S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
    [CrossRef]
  7. T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
    [CrossRef]
  8. Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
    [CrossRef]
  9. B. T. Sullivan, G. Clarke, T. Akiyama, N. Osborne, M. Ranger, J. A. Dobrowolski, L. Howe, A. Matsumoto, Y. Song, and K. Kikuchi, “High-rate automated deposition system for the manufacture of complex multilayer coatings,” Appl. Opt. 39, 157–167 (2000).
    [CrossRef]
  10. D. Poitras, J. A. Dobrowolski, T. Cassidy, and S. Moisa, “Ion-beam etching for the precise manufacture of optical coatings,” Appl. Opt. 42, 4037–4044 (2003).
    [CrossRef] [PubMed]

2010

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

2009

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

2008

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

J. A. Dobrowolski, S. Browning, M. Jacobson, and M. Nadal, “2007 topical meeting on optical interference coatings: manufacturing problem,” Appl. Opt. 47, C231–C245(2008).
[CrossRef] [PubMed]

2006

2003

2002

2000

Akiyama, T.

Bergeron, A.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Browning, S.

Cassidy, T.

Chang, T.-H.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Chen, H.-L.

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Chen, S.-H.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Clarke, G.

Dobrowolski, J. A.

Grigonis, M.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Hendrix, K.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Howe, L.

Jacobson, M.

Jacobson, M. R.

Jakobs, S.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Kikuchi, K.

Lappschies, M.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Lee, C. C.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Lehnert, W.

M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and opto-electronics,” Society of Vacuum Coaters 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), 179.

Matsumoto, A.

Moisa, S.

Nadal, M.

Ockenfuss, G.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Osborne, N.

Pistner, J.

M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and opto-electronics,” Society of Vacuum Coaters 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), 179.

Poitras, D.

Ranger, M.

Sargent, R.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Schallenberg, U.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Scherer, M.

M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and opto-electronics,” Society of Vacuum Coaters 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), 179.

Song, Y.

Stenzel, O.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Sullivan, B. T.

Tilsch, M.

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

Wilbrandt, S.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Yeh, Y.-W.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

Appl. Opt.

Chinese Optics Lett.

S. Jakobs, M. Lappschies, U. Schallenberg, O. Stenzel, and S. Wilbrandt, “Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering,” Chinese Optics Lett. Suppl. 8, 73–77(2010).
[CrossRef]

Opt. Rev.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C. C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

Thin Solid Films

T.-H. Chang, S.-H. Chen, C. C. Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Other

R. Sargent, M. Tilsch, G. Ockenfuss, K. Hendrix, M. Grigonis, and A. Bergeron, “Advances in precision optical coatings through the use of a fast-cycle sputter coater,” Society of Vacuum Coaters 51st Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2008), pp. 478–486.

M. Scherer, J. Pistner, and W. Lehnert, “Innovative production of high quality optical coatings for applications in optics and opto-electronics,” Society of Vacuum Coaters 47th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2004), 179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Definition of the 2010 Manufacturing Problem.

Fig. 2
Fig. 2

Exploratory 40- (a), (b), 56- (c), (d), and 130-layer (e), (f) solutions with MF = 2.96 , 0.500, and 0.0012, respectively. Column 1, the refractive index profiles; column 2, the target and calculated transmittances of the three designs.

Fig. 3
Fig. 3

Error corridors for the 40- (a), (b), 56- (c), (d), and 130-layer (e), (f) solutions shown in Fig. 2. Columns 1 and 2 show the sensitivity to 1% and 1 nm rms metric thickness errors in the individual layers, respectively.

Fig. 4
Fig. 4

Spectral transmittances and refractive index profiles of the distinctive solutions submitted to the 2010 Manufacturing problem: sample S02 ( MF avg = 13.12 ) and sample S04 ( MF avg = 1.037

Fig. 5
Fig. 5

Spectral transmittances and refractive index profiles of the distinctive solutions submitted to the 2010 Manufacturing problem: samples S05 ( M F avg = 1.711 ) and S06 ( M F avg = 1.793 ).

Fig. 6
Fig. 6

Spectral transmittances and refractive index profiles of the distinctive solutions submitted to the 2010 Manufacturing problem: samples S07 ( M F avg = 23.19 ) and S08 ( M F avg = 2.526 ).

Fig. 7
Fig. 7

Spectral transmittances and refractive index profiles of the distinctive solutions submitted to the 2010 Manufacturing problem: samples S09 ( M F avg = 1.608 ) and S10 ( M F avg = 11.22 ).

Fig. 8
Fig. 8

Spectral transmittances and refractive index profiles of the distinctive solutions submitted to the 2010 Manufacturing problem: sample S11 ( M F avg = 4.335 ).

Fig. 9
Fig. 9

Measured MF avg versus calculated merit function values.

Fig. 10
Fig. 10

Bar charts of the measured merit functions MF avg , the number of layers N, and the total metric thicknesses Σ ( d ) for the various samples.

Fig. 11
Fig. 11

Manufacturing Problem team (left to right): David Allan, Li Li, Michael Jacobson, and George Dobrowolski. Unfortunately, David was unable to attend the conference.

Tables (3)

Tables Icon

Table 1 Definition and Tolerances for the 2010 Manufacturing Problem

Tables Icon

Table 2 Participants in the Manufacturing Problem

Tables Icon

Table 3 Summary of the Designs and Merit Functions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

MF = { 1 m k j = 1 4 i = 1 31 ( T i j T j D Δ T j ) 2 } 1 / 2 ,

Metrics