Abstract

Negative charge material, AlOxNy, has been fabricated to passivate the surface of p-type silicon. The fabrication of AlOxNy was possible by using ion beam sputtering deposition to deposit AlN thin film on the surface of a p-type silicon wafer and following annealing in oxygen ambient. Capacitance-voltage analysis shows the fixed charge density has increased from 1011cm2 to 2.26×1012cm2 after annealing. The solar cell efficiency increased from 15.9% to 17.3%, which is also equivalent to the reduction of surface recombination velocity from 1×105 to 32 cm/s.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
    [Crossref]
  2. M. J. Stocks, A. Cuevas, and A. W. Blakers, “Minority carrier lifetimes of multicrystalline silicon during solar cell processing,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference (European Commission Joint Research Centre, 1997), pp. 770–773.
  3. J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
    [Crossref]
  4. P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
    [Crossref]
  5. J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
    [Crossref]
  6. P. A. Basore, D. T. Rover, and A. W. Smith, “PC-1D version 2: Enhanced numerical solar cell modelling,” in Proceedings of IEEE Conference on 20th IEEE Photovoltaic Specialists Conference (IEEE, 1988), pp. 389–396.
  7. K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
    [Crossref]
  8. S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
    [Crossref]
  9. B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
    [Crossref]

2009 (1)

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

2008 (4)

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
[Crossref]

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

2006 (1)

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

2005 (1)

J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
[Crossref]

Basore, P. A.

P. A. Basore, D. T. Rover, and A. W. Smith, “PC-1D version 2: Enhanced numerical solar cell modelling,” in Proceedings of IEEE Conference on 20th IEEE Photovoltaic Specialists Conference (IEEE, 1988), pp. 389–396.

Benick, J.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

Blakers, A. W.

M. J. Stocks, A. Cuevas, and A. W. Blakers, “Minority carrier lifetimes of multicrystalline silicon during solar cell processing,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference (European Commission Joint Research Centre, 1997), pp. 770–773.

Bose, G.

J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
[Crossref]

Cuevas, A.

M. J. Stocks, A. Cuevas, and A. W. Blakers, “Minority carrier lifetimes of multicrystalline silicon during solar cell processing,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference (European Commission Joint Research Centre, 1997), pp. 770–773.

Dhungel, S. K.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Ghosh, S. N.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Glunz, S. W.

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

Heil, S. B. S.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

Hoex, B.

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

Hofmann, M.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

Hwang, S. H.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Jang, K.

K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
[Crossref]

Jang, K. S.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Jeong, S. W.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Jung, S.

K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
[Crossref]

Kania, D.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

Kar, J. P.

J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
[Crossref]

Kessels, W. M. M.

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

Langereis, E.

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

Lee, J.

K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
[Crossref]

Parm, I. O.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Pohl, P.

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

Preu, R.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

Rentsch, J.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

Rover, D. T.

P. A. Basore, D. T. Rover, and A. W. Smith, “PC-1D version 2: Enhanced numerical solar cell modelling,” in Proceedings of IEEE Conference on 20th IEEE Photovoltaic Specialists Conference (IEEE, 1988), pp. 389–396.

Saint-Cast, P.

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

Schmidt, J.

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

Schön, J.

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

Schultz-Wittmann, O.

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

Smith, A. W.

P. A. Basore, D. T. Rover, and A. W. Smith, “PC-1D version 2: Enhanced numerical solar cell modelling,” in Proceedings of IEEE Conference on 20th IEEE Photovoltaic Specialists Conference (IEEE, 1988), pp. 389–396.

Stocks, M. J.

M. J. Stocks, A. Cuevas, and A. W. Blakers, “Minority carrier lifetimes of multicrystalline silicon during solar cell processing,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference (European Commission Joint Research Centre, 1997), pp. 770–773.

Tuli, S.

J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
[Crossref]

van de Sanden, M. C. M.

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

Yi, J.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Yoo, J.

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Appl. Phys. Lett. (2)

B. Hoex, S. B. S. Heil, E. Langereis, M. C. M. van de Sanden, and W. M. M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited AlOxNy,” Appl. Phys. Lett. 89, 042112 (2006).
[Crossref]

P. Saint-Cast, D. Kania, M. Hofmann, J. Benick, J. Rentsch, and R. Preu, “Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide,” Appl. Phys. Lett. 95, 151502 (2009).
[Crossref]

J. Appl. Phys. (1)

B. Hoex, J. Schmidt, P. Pohl, M. C. M. van de Sanden, and W. M. M. Kessels, “Silicon surface passivation by atomic layer deposited Al2O3,” J. Appl. Phys. 104, 044903 (2008).
[Crossref]

Phys. Status Solidi (1)

J. Benick, O. Schultz-Wittmann, J. Schön, and S. W. Glunz, “Surface passivation schemes for high-efficiency n-type Si solar cells,” Phys. Status Solidi 2, 145–147 (2008).
[Crossref]

Renewable Energy (1)

S. N. Ghosh, I. O. Parm, S. K. Dhungel, K. S. Jang, S. W. Jeong, J. Yoo, S. H. Hwang, and J. Yi, “Field-induced surface passivation of p-type silicon by using AlON films,” Renewable Energy 33, 320–325 (2008).
[Crossref]

Surf. Coat. Technol. (1)

J. P. Kar, G. Bose, and S. Tuli, “Effect of annealing on DC sputtered aluminum nitride films,” Surf. Coat. Technol. 198, 64–67 (2005).
[Crossref]

Thin Solid Films (1)

K. Jang, S. Jung, and J. Lee, “Optical and electrical properties of negatively charged aluminium oxynitride films,” Thin Solid Films 517, 444–446 (2008).
[Crossref]

Other (2)

P. A. Basore, D. T. Rover, and A. W. Smith, “PC-1D version 2: Enhanced numerical solar cell modelling,” in Proceedings of IEEE Conference on 20th IEEE Photovoltaic Specialists Conference (IEEE, 1988), pp. 389–396.

M. J. Stocks, A. Cuevas, and A. W. Blakers, “Minority carrier lifetimes of multicrystalline silicon during solar cell processing,” in Proceedings of the 14th European Photovoltaic Solar Energy Conference (European Commission Joint Research Centre, 1997), pp. 770–773.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Numerical model of textured silicon solar cells.

Fig. 2
Fig. 2

Theoretical analysis of solar cell efficiency with different negative charge density.

Fig. 3
Fig. 3

Ion beam sputter deposition system.

Fig. 4
Fig. 4

C-V analysis of AlN thin film on p-type-Si before and after 600 ° C annealing in O 2 to form AlN x O y .

Fig. 5
Fig. 5

C-V curve of AlO x N y thin film fabricated with different nitrogen gas flow during sputtering.

Tables (3)

Tables Icon

Table 1 C-V Measurement Results of AlN Thin Films Before and After Annealing

Tables Icon

Table 2 Negative Charges Density of AlO x N y Fabricated with Different Sputter Nitrogen Flows During Sputtering

Tables Icon

Table 3 Efficiency Enhancement by AlO x N y Thin Film and the Equivalent Surface Recombination Velocity Simulated by PC-1D

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q F = ( Φ MS V FB ) C ox q A ,
C ox = ε ox · ε o · A t ox ,

Metrics