Abstract

A HfO2/SiO2 chirped mirror was manufactured by electron beam evaporation to increase the laser resistance. The hybrid monitoring strategy utilizing both monochromatic monitoring and quartz crystal monitoring was applied to the deposition compared to the single optical monitoring method. The coatings were characterized by transmission spectrophotometer and white light interferometry, and the experimental results showed that the chirped mirror monitored with the hybrid strategy possessed high reflectivity (>99.7%) and tolerable group delay dispersion oscillation (50±20fs2) in the spectra range of 740860nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Szipocs, K. Ferencz, K. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
    [CrossRef] [PubMed]
  2. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, and M. K. Reed, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25, 275–277 (2000).
    [CrossRef]
  3. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
    [CrossRef]
  4. V. Pervak, C. Teisset, A. Sugita, S. Naumov, K. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
    [CrossRef] [PubMed]
  5. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: Toward the optical octave,” Appl. Opt. 45, 1484–1490 (2006).
    [CrossRef] [PubMed]
  6. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
    [CrossRef] [PubMed]
  7. V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
    [CrossRef]
  8. J. R. Birge and F. X. Kartner, “Phase distortion ratio: Alternative to group delay dispersion for analysis and optimization of dispersion compensating optics,” Opt. Lett. 35, 2469–2471(2010).
    [CrossRef] [PubMed]
  9. H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
    [CrossRef] [PubMed]
  10. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef] [PubMed]
  11. M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  12. M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
    [CrossRef]
  13. H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
    [CrossRef]
  14. V. Pervak, K. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32, 1183–1185 (2007).
    [CrossRef] [PubMed]
  15. A. V. Tikhonravov and M. K. Trubetskov, “Optilayer Thin Film Software,” http://www.optilayer.com.

2010

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
[CrossRef]

J. R. Birge and F. X. Kartner, “Phase distortion ratio: Alternative to group delay dispersion for analysis and optimization of dispersion compensating optics,” Opt. Lett. 35, 2469–2471(2010).
[CrossRef] [PubMed]

2009

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

2008

2007

V. Pervak, K. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32, 1183–1185 (2007).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

2006

2005

M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

2003

H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
[CrossRef]

2000

1994

1993

Ahmad, I.

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

Apolonski, A.

Austin, R. R.

Birge, J. R.

Bischoff, M.

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

Chow, R.

Falabella, S.

Ferencz, K.

Fulop, J.

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

Gabler, D.

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

Golubovic, B.

Kaiser, N.

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

Kakehata, M.

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
[CrossRef] [PubMed]

H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
[CrossRef]

Kartner, F. X.

Kozlowski, M. R.

Krausz, F.

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

R. Szipocs, K. Ferencz, K. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).
[CrossRef] [PubMed]

Krausz, K.

Liu, J.

M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Loomis, G. E.

Mero, M.

M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, K. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

Pervak, V.

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
[CrossRef]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, K. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

V. Pervak, K. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32, 1183–1185 (2007).
[CrossRef] [PubMed]

Rainer, F.

Reed, M. K.

Rudolph, W.

M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Spielmann, K.

Steiner-Shepard, M. K.

Steinmeyer, G.

Stenzel, O.

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

Stolz, C. J.

Sugita, A.

Szipocs, R.

Takada, H.

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
[CrossRef] [PubMed]

H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
[CrossRef]

Teisset, C.

Tikhonravov, A. V.

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
[CrossRef]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Optilayer Thin Film Software,” http://www.optilayer.com.

Torizuka, K.

H. Takada, M. Kakehata, and K. Torizuka, “High-repetition-rate 12 fs pulse amplification by a Ti:sapphire regenerative amplifier system,” Opt. Lett. 31, 1145–1147 (2006).
[CrossRef] [PubMed]

H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
[CrossRef]

Trubetskov, M. K.

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
[CrossRef]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “Optilayer Thin Film Software,” http://www.optilayer.com.

Appl. Opt.

Appl. Phys. B

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87, 5–12(2007).
[CrossRef]

Jpn. J. Appl. Phys.

H. Takada, M. Kakehata, and K. Torizuka, “High-energy dichroic chirped mirror for an ultrashort pulse amplification system,” Jpn. J. Appl. Phys. 42, L760–L762 (2003).
[CrossRef]

Opt. Express

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparision of dispersive mirrors based on the time-domain and conventional approaches, for sub-5 fs pulses,” Opt. Express 17, 2207–2217 (2009).
[CrossRef] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, K. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

M. Mero, J. Liu, and W. Rudolph, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Proc. SPIE

M. Bischoff, O. Stenzel, D. Gabler, and N. Kaiser, “Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation,” Proc. SPIE 5963, 59631N(2005).
[CrossRef]

V. Pervak, M. K. Trubetskov, and A. V. Tikhonravov, “Design consideration for high damage threshold UV-Vis-IR mirrors,” Proc. SPIE 7504, 75040A (2010).
[CrossRef]

Other

A. V. Tikhonravov and M. K. Trubetskov, “Optilayer Thin Film Software,” http://www.optilayer.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Physical thicknesses of layers in the designed CM.

Fig. 2
Fig. 2

Simulated curve and the error region of GDD.

Fig. 3
Fig. 3

(a) Measured and calculated curves of reflectivity of CM, (b) measured GDD curve for the first coating run.

Fig. 4
Fig. 4

(a) Measured and calculated curves of reflectivity of CM, (b) measured GDD curve for the second coating run.

Metrics