Abstract

Growing laser damage sites on multilayer high-reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with predesigned benign mitigation structures. By mitigating the weakest site on the optic, the large-aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite-difference time-domain method was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore, the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarized wave at a range of incident angles between 30° and 45°.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
    [CrossRef]
  2. J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
    [CrossRef]
  3. F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  4. S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
    [CrossRef] [PubMed]
  5. J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
    [CrossRef]
  6. P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
    [CrossRef]
  7. M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
    [CrossRef]
  8. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
    [CrossRef]
  9. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef] [PubMed]
  10. Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).
  11. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
    [CrossRef]
  12. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
    [CrossRef]
  13. D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.
  14. S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
    [CrossRef]
  15. T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).
  16. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
    [CrossRef]
  17. J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.
  18. S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
    [CrossRef]

2011 (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

2010 (2)

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

2009 (2)

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

2008 (1)

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

2007 (1)

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

2006 (2)

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

2005 (1)

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

1997 (2)

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

1996 (1)

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1993 (1)

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

Borden, M. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Carr, W.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Chen, W. L.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Desrumaux, C.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Dijon, J.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Draggoo, V.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Dumas, P.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Fan, Z. X.

Feit, M. D.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

Folta, J. A.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Garnov, S. V.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Garrec, P.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Genin, F. Y.

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Geraghty, P.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Gill, D. H.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Griffin, A. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Hackel, R.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

He, H. B.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Kaiser, N.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Klimentov, S. M.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Li, D. W.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Li, S. H.

Li, X.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Li, Y. Y.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Ling, X. L.

Liu, X.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Mailhiot, C.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Martinez, C.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

McLeod, J.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Menapace, J.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Monterrosa, A. M.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

Newnam, B. E.

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Norton, M.

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

Ozkan, A.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Pistor, T. V.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).

Poiroux, T.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

Qiu, S. R.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Said, A. A.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Schallenberg, U. B.

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

Shan, Y. G.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Soileau, M. J.

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Steele, W. A.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

Stolz, C. J.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded with multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef] [PubMed]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Taylor, J. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Teslich, N. E.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

Thomas, M.

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

Thomas, M. D.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

Tricard, M.

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

Wang, Y.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Wolfe, J. E.

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

Zhang, Y. G.

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Zhao, Y. A.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

S. H. Li, H. B. He, D. W. Li, M. Zhou, X. L. Ling, Y. A. Zhao, and Z. X. Fan, “Temperature field analysis of TiO2 films with high-absorptance inclusions,” Appl. Opt. 49, 329–333 (2010).
[CrossRef] [PubMed]

Zhou, M.

Acta Phys. Sin. (1)

Y. Wang, Y. G. Zhang, X. Liu, W. L. Chen, and Y. Y. Li, “Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings,” Acta Phys. Sin. 56, 6588–6591 (2007).

Appl. Opt. (2)

Opt. Commun. (1)

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, and Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284, 625–629 (2011).
[CrossRef]

Proc. SPIE (10)

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Modeling of light intensification by conical pits within multilayer high reflector coatings,” Proc. SPIE 7504, 75040M (2009).
[CrossRef]

J. E. Wolfe, S. R. Qiu, C. J. Stolz, M. Thomas, C. Martinez, and A. Ozkan, “Laser damage resistant pits in dielectric coatings created by femtosecond laser machining,” Proc. SPIE 7504, 750405 (2009).
[CrossRef]

P. Geraghty, W. Carr, V. Draggoo, R. Hackel, C. Mailhiot, and M. Norton, “Surface damage growth mitigation on KDP/DKDP optics using single-crystal diamond micro-machining ball end mill contouring,” Proc. SPIE 6403, 64030Q (2006).
[CrossRef]

M. Tricard, P. Dumas, and J. Menapace, “Continuous phase plate polishing using magnetorheological finishing,” Proc. SPIE 7062, 70620V (2008).
[CrossRef]

S. R. Qiu, J. E. Wolfe, A. M. Monterrosa, W. A. Steele, N. E. Teslich, M. D. Feit, T. V. Pistor, and C. J. Stolz, “Impact of substrate surface scratches on the laser damage resistance of multilayer coatings,” Proc. SPIE 7842, 78421X(2010).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A(2005).
[CrossRef]

J. Dijon, P. Garrec, N. Kaiser, and U. B. Schallenberg, “Influence of substrate cleaning on LIDT of 355 nm HR coatings,” Proc. SPIE 2966, 178–186 (1997).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in the laser damage of thin films,” Proc. SPIE 2966, 315–325 (1997).
[CrossRef]

F. Y. Genin and C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

S. V. Garnov, S. M. Klimentov, A. A. Said, and M. J. Soileau, “Laser damage of HR, AR-coatings, monolayers and bare surface at 1064 nm,” Proc. SPIE 1848, 162–181 (1993).
[CrossRef]

Other (4)

T. V. Pistor, Electromagnetic Simulation and Modeling with Applications in Lithography (University of California, 2001).

J. E. Wolfe, S. R. Qiu, and C. J. Stolz, “Fabrication of mitigation pits for improving laser damage resistance in dielectric mirrors by femtosecond laser machining,” submitted to Appl. Opt.

P. W. Baumeister, Optical Coating Technology (SPIE, 2004).
[CrossRef]

D. H. Gill, B. E. Newnam, and J. McLeod, “Use of non-quarter-wave-designs to increase the damage resistance of reflectors at 532 and 1064 nanometers,” in Proceedings of the Laser Induced Damage in Optical Materials Symposium(National Bureau of Standards, 1977), Vol.  509, pp. 260–270.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematics of the 3D simulation domain showing a multilayer coating with a conical pit with a 15 ° cone angle on a BK7 glass substrate. The hafnia layers are represented by the green color, while the light blue color represents silica layers, the glass substrate, and the cap layer.

Fig. 2
Fig. 2

Electrical field intensity distribution in the hafnia layer with a 15 ° conical pit for s-polarized light irradiated at 45 ° where the highest intensification resides. The maximum intensification is located at the second hafnia layer from the top and at the right side of the cone edge, which is delineated by dotted white lines. A higher color scale value corresponds to higher field enhancement. (a) Cross section (at Z = 3.69 μm ) that is perpendicular to the plane of incidence. (b) Cross section (at Y = 17.08 μm ) that is parallel to the plane of incidence. For viewing purposes, the image in (b) is stretched along the vertical direction.

Fig. 3
Fig. 3

Electrical field intensity distribution in the hafnia layer with a 15 ° conical pit for p-polarized light irradiated at 45 ° where the highest intensification resides. The maximum intensification is located at the first hafnia layer from the top and at the left side of the cone edge, which is delineated by dotted white lines. A higher color scale value corresponds to higher field enhancement. (a) Cross section (at Z = 4.0 μm ) that is perpendicular to plane of incidence. (b) Cross section (at Y = 42.0 μm ) that is parallel to the plane of incidence. For viewing purposes, the image in (b) is stretched along the vertical direction.

Fig. 4
Fig. 4

Distribution of the maximum intensification within the hafnia layers in the defective multilayer coating film for various cone angles and s-polarized light irradiation at a series of AOIs. (a) 2D column plot. The color-box legend indicates the angle of incidence. (b) Contour plot. The blue line indicates that light intensification in mitigation sites is minimized when the cone angle and the incident angle are matched. The color-box legend represents the magnitude of intensification.

Fig. 5
Fig. 5

Distribution of the maximum intensification within the hafnia layers in the defective multilayer coating film for various cone angles and p-polarized light irradiation at a series of AOIs. (a) 2D column plot. The color-box legend indicates the angle of incidence. (b) Contour plot. The blue line indicates that light intensification in mitigation sites is minimized when the cone angle and the incident angle are matched. The color-box legend represents the magnitude of intensification.

Fig. 6
Fig. 6

Electrical field intensity distribution in the silica layer with a 15 ° conical pit for s-polarized light irradiated at 45 ° where the highest intensification resides. The maximum intensification is located at the first silica layer from the top and at the right side of the cone edge, which is delineated by dotted white lines. A higher color scale value corresponds to higher field enhancement. (a) Cross section (at Z = 4.275 μm ) that is perpendicular to the plane of incidence. (b) Cross section (at Y = 30.03 μm ) that is parallel to the plane of incidence. For viewing purposes, the image in (b) is stretched along the vertical direction.

Fig. 7
Fig. 7

Electric-field intensity distribution in the silica layer with a 15 ° conical pit for p-polarized light irradiated at 45 ° where the highest intensification resides. The maximum intensification is located at the first silica layer from the top and at the left side of cone edge, which is delineated by dotted white lines. A higher color scale value corresponds to higher field enhancement. (a) Cross section (at Z = 4.32 μm ) that is perpendicular to the plane of incidence. (b) Cross section (at Y = 40.53 μm ) that is parallel to the plane of incidence. For viewing purposes, the image in (b) is stretched along the vertical direction.

Fig. 8
Fig. 8

Distribution of the maximum intensification within the silica layers in the defective multilayer coating film for various cone angles and s-polarized light irradiation at a series of AOIs. (a) 2D column plot. The color-box legend indicates the angle of incidence. (b) Contour plot. The blue line indicates that the light intensification in mitigation sites is minimized when the cone angle and the incident angle are matched. The color-box legend represents the magnitude of intensification.

Fig. 9
Fig. 9

Distribution of the maximum intensification within the silica layers in the defective multilayer coating film for various cone angles and p-polarized light irradiation at a series of AOIs. (a) 2D column plot. The color-box legend indicates the angle of incidence. (b) Contour plot. The blue line indicates that light intensification in the mitigation sites is minimized when the cone angle and the incident angle are matched. The color-box legend represents the magnitude of intensification.

Fig. 10
Fig. 10

Electrical field intensity distribution within multilayer coating layers at the presence of a 15 ° conical pit of a (a) smooth edge and (b) rough edge. Beam irradiated at 45 ° from surface normal. Domain dimension: 90 μm × 4.963 μm . For visualization purposes, all images are stretched along the vertical direction.

Fig. 11
Fig. 11

Laser damage results on conical pits fabricated by femtosecond laser machining and its correlation to simulation results. Feature size 1 mm conical pit of 15 ° cone angle. (a) Light microscope image of fabricated feature before damage test. (b) Light microscope image of conical pit after testing up to 42 J / cm 2 under irradiation of 1064 nm of s-polarized laser light. (c) Simulation result showing the maximum intensification location for s-polarized light. (d) Light microscope image of conical pit after tested up to 54 J / cm 2 under irradiation of 1064 nm of p-polarized laser light. (e) Simulation result showing the maximum intensification location for p-polarized light.

Tables (2)

Tables Icon

Table 1 Optimal Mitigation Pit Cone Angles under Different Angles of Incidence for the s-Polarized Wave

Tables Icon

Table 2 Optimal Mitigation Pit Cone Angles under Different Angles of Incidence for the p-Polarized Wave

Metrics