Abstract

A reactive electron beam evaporation process was used to fabricate 1.064μm HfO2/SiO2 high reflectors. The deposition process was optimized to reduce the nodular density. Cross-sectioning of nodular defects by a focused ion-beam milling instrument showed that the nodule seeds were the residual particles on the substrate and the particulates from the silica source “splitting.” After optimizing the substrate preparation procedure and the evaporation process, a low nodular density of 2.7/mm2 was achieved. The laser damage test revealed that the ejection fluences and damage growth behaviors of nodules created from deep or shallow seeds were totally different. A mechanism based on directional plasma scald was proposed to interpret observed damage growth phenomenon.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994).
    [CrossRef]
  2. C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
    [CrossRef]
  3. J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
    [CrossRef]
  4. C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
    [CrossRef]
  5. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef]
  6. M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
    [CrossRef]
  7. X. F. Liu, D. W. Li, Y. A. Zhao, and X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49, 1774–1779 (2010).
    [CrossRef]
  8. C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
    [CrossRef]
  9. C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47, C162–C166 (2008).
    [CrossRef]
  10. Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
    [CrossRef]
  11. Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
    [CrossRef]
  12. M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
    [CrossRef]
  13. J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
    [CrossRef]

2010 (1)

2008 (1)

2007 (1)

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

2006 (1)

2005 (1)

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

2000 (2)

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

1999 (2)

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

1997 (1)

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
[CrossRef]

1996 (1)

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

1994 (1)

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994).
[CrossRef]

1993 (1)

André, B.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Bevis, R. P.

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Borden, M. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Chen, W.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Chow, R.

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Desrumaux, C.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
[CrossRef]

Dijon, J.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
[CrossRef]

Falabella, S.

Feit, M. D.

Folta, J. A.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Fornier, A.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

Griffin, A. J.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Gu, P.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Hafeman, S.

Hue, J.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Ignat, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

Kikuchi, K.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Kozlowski, M. R.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Leplan, H.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

Li, D. W.

Li, X.

Liu, X.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Liu, X. F.

Loomis, G. E.

Maruta, K.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Matsumoto, S.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Matusita, A.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Pellé, C.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Pinot, B.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

Pistor, T. V.

Poiroux, T.

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
[CrossRef]

Poulingue, M.

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

Rafin, B.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Rainer, F.

Ravel, G.

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Saisho, S.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Sakurai, T.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Sheehana, L. M.

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Smith, D. J.

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Song, Y. Z.

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Sto1z, C. J.

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Stolz, C. J.

C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47, C162–C166 (2008).
[CrossRef]

C. J. Stolz, M. D. Feit, and T. V. Pistor, “Laser intensification by spherical inclusions embedded within multilayer coatings,” Appl. Opt. 45, 1594–1601 (2006).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low-defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Taylor, J. R.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Tench, R. J.

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

Thomas, M. D.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

von Gunte, M. K.

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Wang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Wolfe, J. E.

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

Zhang, Y.

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Zhao, Y. A.

Appl. Opt. (4)

Opt. Commun. (1)

Y. Wang, Y. Zhang, X. Liu, W. Chen, and P. Gu, “Gaussian profile laser intensification by nodular defects in mid-infrared high reflectance coatings,” Opt. Commun. 278, 317–320(2007).
[CrossRef]

Proc. SPIE (7)

M. R. Kozlowski and R. Chow, “The role of defects in laser damage of multilayer coatings,” Proc. SPIE 2114, 640–649 (1994).
[CrossRef]

C. J. Stolz, R. J. Tench, M. R. Kozlowski, and A. Fornier, “A comparison of nodular defect seed geometries from different deposition techniques,” Proc. SPIE 2714, 374–382 (1996).
[CrossRef]

J. Dijon, T. Poiroux, and C. Desrumaux, “Nano absorbing centers: a key point in laser damage thin films,” Proc. SPIE 2966, 315–382 (1997).
[CrossRef]

C. J. Sto1z, L. M. Sheehana, M. K. von Gunte, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

M. Poulingue, J. Dijon, M. Ignat, H. Leplan, and B. Pinot, “New approach for the critical size of the nodular defects: the mechanical connection,” Proc. SPIE 3578, 370–381(1999).
[CrossRef]

M. R. Borden, J. A. Folta, C. J. Stolz, J. R. Taylor, J. E. Wolfe, A. J. Griffin, and M. D. Thomas, “Improved method for laser damage testing coated optics,” Proc. SPIE 5991, 59912A (2005).
[CrossRef]

J. Dijon, B. Rafin, C. Pellé, J. Hue, G. Ravel, and B. André, “One-hundred joule per square centimeter 1.06 μm mirrors,” Proc. SPIE 3902, 158–168 (2000).
[CrossRef]

Vacuum (1)

Y. Z. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin-films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup of the laser damage test facility. HR mirror, high reflection mirror; PD, photodiode; ND filter, neutral density filter.

Fig. 2
Fig. 2

Cross sections of typical nodules from several coatings. (a) Nodule initiating from a seed on the substrate. (b) Pit generated after laser radiation, where the seed is originally on the substrate. (c) Nodules initiating from shallow-spattering silica seeds; the left one is not ejected, and the right one is ejected at the same fluence.

Fig. 3
Fig. 3

Nodular density revealed with a Nomarski microscope with 200 × magnification.

Fig. 4
Fig. 4

Damage test results for one HfO 2 / SiO 2 45 ° P-polarization high reflector.

Fig. 5
Fig. 5

AFM morphology of typical nodule with a height of 1.06 μm .

Fig. 6
Fig. 6

Damage growth of one 6.5 μm nodule that is created from a seed on the substrate. (a) A 6.5 μm nodule. (b) A pit forms with a weak plasma scald. (c) Severe plasma scald occurs at subsequent higher fluence. (d) Catastrophic failure happens.

Fig. 7
Fig. 7

Damage growth of a 3.2 μm nodule initiating from a shallow-spattering silica seed. (a) A 3.2 μm nodule. (b) A pit forms without visible plasma scald. (c) The pinpoint damage grows a little. (d) Catastrophic failure happens.

Fig. 8
Fig. 8

Delaminates occurred without initiating from a pinpoint damage site.

Metrics