Abstract

A review on the use of photonic structures enabling a better absorption of solar radiation within solar cells is proposed. Specific geometric configurations, such as folded solar cells or fiber-based architectures, are shown to be promising solutions to reach better light absorption. Electromagnetic optimization of thin-film solar cells and the use of angular thin-film filters, proposed by several research groups, also provide solutions to better concentrate solar radiation within the active layers of solar cells. Finally, results on “photonized” solar cells comprising gratings or more advanced photonic components, such as photonic crystals or plasmonic structures, and their effects on light–matter interaction in solar cells are highlighted.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
    [CrossRef]
  2. M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy Mater. 74, 181–192 (2003).
    [CrossRef]
  3. M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. 9, 123–135 (2001).
    [CrossRef]
  4. M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
    [CrossRef]
  5. C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
    [CrossRef]
  6. G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
    [CrossRef]
  7. F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
    [CrossRef]
  8. D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
    [CrossRef]
  9. C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
    [CrossRef]
  10. J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
    [CrossRef]
  11. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
    [CrossRef]
  12. I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
    [CrossRef]
  13. N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
    [CrossRef]
  14. O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Sol. Energy Mater. Sol. Cells 52, 361–388 (1998).
    [CrossRef]
  15. J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
    [CrossRef]
  16. K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
    [CrossRef]
  17. H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000).
    [CrossRef]
  18. J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993).
    [CrossRef]
  19. R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997).
    [CrossRef]
  20. K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
    [CrossRef]
  21. N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
    [CrossRef]
  22. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
    [CrossRef]
  23. K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
    [CrossRef]
  24. P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
    [CrossRef]
  25. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
    [CrossRef]
  26. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
    [CrossRef]
  27. D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991).
    [CrossRef]
  28. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
    [CrossRef] [PubMed]
  29. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
    [CrossRef]
  30. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
    [CrossRef] [PubMed]
  31. N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
    [CrossRef]
  32. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
    [CrossRef]
  33. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
    [CrossRef] [PubMed]
  34. A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
    [CrossRef] [PubMed]
  35. R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997).
    [CrossRef]
  36. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
    [CrossRef] [PubMed]
  37. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
    [CrossRef]
  38. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
    [CrossRef]
  39. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
    [CrossRef]
  40. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
    [CrossRef]
  41. B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
    [CrossRef]
  42. N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
    [CrossRef]
  43. J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
    [CrossRef] [PubMed]
  44. D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
    [CrossRef]
  45. D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
    [CrossRef]
  46. F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
    [CrossRef]
  47. H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
    [CrossRef]
  48. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
    [CrossRef] [PubMed]
  49. M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
    [CrossRef]
  50. A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
    [CrossRef]
  51. L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
    [CrossRef]
  52. R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
    [CrossRef]
  53. R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
    [CrossRef] [PubMed]
  54. S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
    [CrossRef]
  55. Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
    [CrossRef] [PubMed]
  56. M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
    [CrossRef]
  57. Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
    [CrossRef]
  58. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
    [CrossRef]
  59. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005).
    [CrossRef]
  60. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
    [CrossRef]
  61. S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
    [CrossRef]
  62. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
    [CrossRef]
  63. L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
    [CrossRef]
  64. A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
    [CrossRef]
  65. M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
    [CrossRef]
  66. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
    [CrossRef] [PubMed]
  67. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
    [CrossRef] [PubMed]
  68. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
    [CrossRef]
  69. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
    [CrossRef] [PubMed]
  70. D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
    [CrossRef] [PubMed]
  71. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
    [CrossRef] [PubMed]
  72. J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
    [CrossRef]
  73. D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
    [CrossRef]
  74. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
    [CrossRef] [PubMed]
  75. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  76. K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
    [CrossRef]
  77. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  78. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
    [CrossRef]
  79. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
    [CrossRef]

2009 (10)

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
[CrossRef] [PubMed]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
[CrossRef] [PubMed]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

2008 (10)

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
[CrossRef] [PubMed]

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef] [PubMed]

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

2007 (15)

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

2006 (8)

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

2005 (6)

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
[CrossRef]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
[CrossRef]

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005).
[CrossRef]

2004 (6)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
[CrossRef]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
[CrossRef]

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

2003 (5)

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy Mater. 74, 181–192 (2003).
[CrossRef]

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
[CrossRef]

2001 (1)

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. 9, 123–135 (2001).
[CrossRef]

2000 (6)

H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef] [PubMed]

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

1999 (1)

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
[CrossRef]

1998 (2)

O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Sol. Energy Mater. Sol. Cells 52, 361–388 (1998).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

1997 (3)

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997).
[CrossRef]

R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997).
[CrossRef]

1994 (1)

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

1993 (2)

J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

1991 (1)

D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991).
[CrossRef]

1980 (1)

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

1976 (1)

D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

Alamariu, B. A.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Ameri, T.

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Andersson, B. V.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

Andersson, M. R.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Arkhipov, V.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

Bailly, S.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

Barnett, A.

Basore, P. A.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Beaucarne, G.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

Berginc, G.

Bermel, P.

Bielawny, A.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Birkmire, R. W.

R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997).
[CrossRef]

Bisconti, R.

R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997).
[CrossRef]

Blom, P. W. M.

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

Bouffaron, R.

Bourdais, S.

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

Brabec, C. J.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Bradley, D. C.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Braun, D.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Brissonneau, V.

Britt, J.

J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993).
[CrossRef]

Cahen, D.

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

Campbell, J. C.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Campbell, P.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
[CrossRef]

Carey, J. E.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Carius, R.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Carlson, D.

D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

Carroll, D. L.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

Cavana, B.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

Chang, J.-Y.

Chang, N.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Chen, C.

Cho, J. C.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Cho, S.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

Chopra, K. L.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
[CrossRef]

Choulis, S. A.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Citarella, A.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Clugston, D.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

Cocoyer, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Contreras, M. A.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Cook, S.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Cowan, S.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

Creazzo, T.

Cuevas, A.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
[CrossRef]

Dante, M.

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

de Bettignies, R.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Defranoux, C.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

Dehart, C.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Delcanizo, C.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

Della Sala, D.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Denk, P.

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Dennler, G.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

DeSimone, J. M.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

Di Francia, G.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Dobson, K. D.

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

Dowling, J. P.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Drouard, E.

Duan, X.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Duché, D.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

Durose, K.

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
[CrossRef]

Durrant, J. R.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Dutta, V.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
[CrossRef]

Eckert, R. D.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

Edwards, P. R.

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
[CrossRef]

Egaas, B.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Egan, R.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

El Daif, O.

Escoubas, L.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Eser, E.

R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997).
[CrossRef]

Evans, R.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Fahr, S.

Fameli, G.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Fave, A.

Feng, N.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Ferekides, C.

J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993).
[CrossRef]

Ferrazza, F.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Finger, F.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Fiorini-Debuisschert, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Florescu, L.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Florescu, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Fluckiger, R.

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

Forberich, K.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Forrest, S. R.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Gaudiana, R. A.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

Geffroy, B.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Giles, M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Giovannini, H.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Glatthaar, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gobsch, G.

H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
[CrossRef]

Gombert, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Gong, X.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Granlund, T.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Gratzel, M.

A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy Mater. 74, 181–192 (2003).
[CrossRef]

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. 9, 123–135 (2001).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Grillo, P.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Gruber, D. P.

D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
[CrossRef]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
[CrossRef]

Guillemoles, J. F.

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

Guillerez, S.

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

Guo, L. J.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Guo, X.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Ha, C.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Haase, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

Hagfeldt, A.

A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef] [PubMed]

Halliday, D. P.

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
[CrossRef]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Heeger, A. J.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Hingerl, K.

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Hinsch, A.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Hodes, G.

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

Hogg, D.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Hong, C.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Honsberg, C.

Hoppe, H.

H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
[CrossRef]

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

Houben, L.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Huang, C.-F.

Huang, D. M.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

Huang, Z.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Hummelen, J. C.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Ikegami, S.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Inganas, O.

N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
[CrossRef]

Inganäs, O.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Jarnason, S.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Jasenek, A.

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

Jiang, C. W.

C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

Jo, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Joannopoulos, J. D.

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Kaminski, A.

Keane, J. C.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

Keevers, M.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Keppner, H.

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

Kerr, M. J.

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
[CrossRef]

Kim, D.-Y.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

Kim, J.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kim, J.-S.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Kim, J.-Y.

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

Kim, M.-S.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Kim, S. H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Kim, S.-S.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kim, Y.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Kima, D.-Y.

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Kima, J.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Kimerling, L. C.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Kirchartz, T.

Kluth, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Knez, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Ko, D.-H.

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

Koster, L. J. A.

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

Kronik, L.

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

Kwon, S.-S.

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Lambertz, A.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Lasswell, P.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Lederer, F.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef] [PubMed]

Lee, H.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Lee, H.-H.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Lee, K.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Lee, M. R.

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

Lee, S.-M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Lee, T.

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Lee, Y.-C.

Lemiti, M.

Letartre, X.

Lin, C.

Lincot, D.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

Liu, J.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Liu, M.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Llopis, F.

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005).
[CrossRef]

Loli, M.

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Lopez, R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

Luo, C.

Ma, W.

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

Markov, D. E.

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

Masclet, P.

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Matsumoto, H.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Mazur, E.

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

Mccann, M.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

McCulloch, I.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

McGehee, M. D.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

Meier, J.

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

Meinhardt, G.

D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
[CrossRef]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
[CrossRef]

Meissner, D.

D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991).
[CrossRef]

Miclea, P. T.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Mihailetchi, V. D.

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

Morfa, A. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Moses, D.

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

Moulé, A. J.

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

Mück, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Müller, J.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

Mutitu, J. G.

Na, S.-I.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

Naghavi, N.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

Nakano, A.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Nakayama, N.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Namboothiry, M. A. G.

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
[CrossRef]

Nelson, J.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Nguyen, T.-Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

Niggemann, M.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Noufi, R.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000).
[CrossRef]

Nyberg, T.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

O’Sullivan, J.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Oh, S.-H.

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

Ossenbrink, H. A.

R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997).
[CrossRef]

Papousek, W.

D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
[CrossRef]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
[CrossRef]

Park, S. H.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

Park, Y.

Pascarella, F.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Paulson, P. D.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
[CrossRef]

Perkins, C. L.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Perssona, N.-K.

N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
[CrossRef]

Peters, M.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Peumans, P.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

Polman, A.

Poortmans, J.

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

Povinelli, M. L.

Powalla, M.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

Pralle, M.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Prather, D. W.

Prosini, P.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Puscasu, I.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

Raimond, P.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Ramanathan, K.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

Rau, U.

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef] [PubMed]

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

Rech, B.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Ree, M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Reilly, T. H.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Repins, I.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Rim, S.-B.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

Roca, F.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Rocha, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Rockstuhl, C.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef] [PubMed]

Roman, L. S.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Romero, M. J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Rowlen, K. L.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Roy, A.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

Samulski, E. T.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

Sariciftci, N. S.

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Savadogo, O.

O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Sol. Energy Mater. Sol. Cells 52, 361–388 (1998).
[CrossRef]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Scharf, J.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Schock, H. W.

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000).
[CrossRef]

Schubert, M.

N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
[CrossRef]

Schubert, U.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Scully, S. R.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

Seassal, C.

Senoussaoui, N.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

Sentein, C.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Shah, A.

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

Shi, S.

Shokhovets, S.

H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
[CrossRef]

Shtein, M.

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Sicot, L.

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

Simon, J. J.

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Simon, J.-J.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

Sinno, G.

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

Slaoui, A.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

Spiering, S.

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

Srdanov, V. I.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Steidl, L.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Stiebig, H.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

Strumpel, C.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

Stucky, G.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Svensson, M.

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

Svrcek, V.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

Teeter, G.

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

Ting, D. Z.

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

To, B.

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

Tobias, I.

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005).
[CrossRef]

Tong, M. H.

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Tuladhar, S. M.

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

Tumbleston, J. R.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

Turner, A.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Uda, H.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Ulbrich, C.

Üpping, J.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Van De Lagemaat, J.

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

Vervisch, W.

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

Vetterl, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Viktorovitch, P.

Visoly-Fisher, I.

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

Wagner, H.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

Waldauf, C.

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

Wang, A.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Wehrspohn, R. B.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Wenham, S. R.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Williams, S.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

Wittwer, V.

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

Wohrle, D.

D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991).
[CrossRef]

Wronski, C.

D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

Wu, M.-L.

Wudl, F.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Yakimov, A.

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

Yamashita, T.

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Yi, Y.

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Young, T.

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

Zahren, C.

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

Zeng, L.

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[CrossRef] [PubMed]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

Zentel, R.

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

Zhang, C.

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

Zhang, L.

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

Zhao, J.

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

Zhao, S.

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

Acc. Chem. Res. (1)

A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Acc. Chem. Res. 33, 269–277 (2000).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S.-I. Na, S.-S. Kim, J. Jo, S.-H. Oh, J. Kim, and D.-Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater. 18, 3956–3963 (2008).
[CrossRef]

Adv. Mater. (4)

L. S. Roman, O. Inganäs, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000).
[CrossRef]

J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, “New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572–576 (2006).
[CrossRef]

D. Wohrle and D. Meissner, “Organic solar cells,” Adv. Mater. 3, 129–138 (1991).
[CrossRef]

P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, “Device physics of polymer: fullerene bulk heterojunction solar cells,” Adv. Mater. 19, 1551–1566(2007).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27, 625–653 (1997).
[CrossRef]

Appl. Phys. A (1)

G. Beaucarne, S. Bourdais, A. Slaoui, and J. Poortmans, “Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C),” Appl. Phys. A 79, 469–480 (2004).
[CrossRef]

Appl. Phys. Lett. (18)

D. Carlson and C. Wronski, “Amorphous silicon solar cell,” Appl. Phys. Lett. 28, 671–673 (1976).
[CrossRef]

J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1991–1993 (1998).
[CrossRef]

J. Meier, R. Fluckiger, H. Keppner, and A. Shah, “Complete microcrystalline p-i-n solar cell—crystalline or amorphous cell behavior?,” Appl. Phys. Lett. 65, 860–862 (1994).
[CrossRef]

J. Britt and C. Ferekides, “Thin-film Cds/Cdte solar cell with 15.8 percent efficiency,” Appl. Phys. Lett. 62, 2851–2852 (1993).
[CrossRef]

N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions—diodes, photodiodes, and photovoltaic cells,” Appl. Phys. Lett. 62, 585–587(1993).
[CrossRef]

B. V. Andersson, D. M. Huang, A. J. Moulé, and O. Inganäs, “An optical spacer is no panacea for light collection in organic solar cells,” Appl. Phys. Lett. 94, 043302 (2009).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett. 90, 133515 (2007).
[CrossRef]

J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Fiber-based architectures for organic photovoltaics,” Appl. Phys. Lett. 90, 063501 (2007).
[CrossRef]

S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, “An effective light trapping configuration for thin-film solar cells,” Appl. Phys. Lett. 91, 243501(2007).
[CrossRef]

A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, “Titanium suboxide as an optical spacer in polymer solar cells,” Appl. Phys. Lett. 95, 013302 (2009).
[CrossRef]

L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett. 89, 111111 (2006).
[CrossRef]

S.-I. Na, S.-S. Kim, S.-S. Kwon, J. Jo, J. Kim, T. Lee, and D.-Y. Kima, “Surface relief gratings on poly3-hexylthiophene and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007).
[CrossRef]

M.-S. Kim, J.-S. Kim, J. C. Cho, M. Shtein, L. J. Guo, and J. Kima, “Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography,” Appl. Phys. Lett. 90, 123113 (2007).
[CrossRef]

Z. Huang, J. E. Carey, M. Liu, X. Guo, E. Mazur, and J. C. Campbell, “Microstructured silicon photodetector,” Appl. Phys. Lett. 89, 033506 (2006).
[CrossRef]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009).
[CrossRef]

D. Duché, L. Escoubas, J.-J. Simon, P. Torchio, W. Vervisch, and F. Flory, “Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells,” Appl. Phys. Lett. 92, 193310 (2008).
[CrossRef]

C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett. 88, 133108 (2006).
[CrossRef]

A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. Van De Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett. 92, 013504 (2008).
[CrossRef]

J. Appl. Phys. (4)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102, 123109(2007).
[CrossRef]

P. Peumans, A. Yakimov, and S. R. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003).
[CrossRef]

C. W. Jiang and M. A. Green, “Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications,” J. Appl. Phys. 99, 114902 (2006).
[CrossRef]

J. Cryst. Growth (1)

K. Durose, P. R. Edwards, and D. P. Halliday, “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth 197, 733–742 (1999).
[CrossRef]

J. Lumin. (1)

K. R. Catchpole and S. Pillai, “Surface plasmons for enhanced silicon light-emitting diodes and solar cells,” J. Lumin. 121, 315–318 (2006).
[CrossRef]

J. Mater. Res. (1)

H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res. 19, 1924–1945 (2004).
[CrossRef]

J. Phys. Chem. B (1)

J. F. Guillemoles, L. KronikD. Cahen, U. Rau, A. Jasenek, and H. W. Schock, “Stability issues of Cu(In,Ga)Se-2-based solar cells,” J. Phys. Chem. B 104, 4849–4862 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Nakayama, H. Matsumoto, A. Nakano, S. Ikegami, H. Uda, and T. Yamashita, “Screen printed thin-film Cds-Cdte solar-cell,” Jpn. J. Appl. Phys. 19, 703–712 (1980).
[CrossRef]

Nano Lett. (1)

D.-H. Ko, J. R. Tumbleston, L. Zhang, S. Williams, J. M. DeSimone, R. Lopez, and E. T. Samulski, “Photonic crystal geometry for organic solar cells,” Nano Lett. 9, 2742–2746(2009).
[CrossRef] [PubMed]

Nat. Mater. (3)

Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. C. Bradley, M. Giles, I. McCulloch, C. Ha, and M. Ree, “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells,” Nat. Mater. 5, 197–203 (2006).
[CrossRef]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455–459(2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Escoubas, J. J. Simon, M. Loli, G. Berginc, F. Flory, and H. Giovannini, “An antireflective silicon grating working in the resonance domain for the near infrared spectral region,” Opt. Commun. 226, 81–88 (2003).
[CrossRef]

Opt. Express (10)

R. Bouffaron, L. Escoubas, J. J. Simon, P. Torchio, F. Flory, G. Berginc, and P. Masclet, “Enhanced antireflecting properties of micro-structured top-flat pyramids,” Opt. Express 16, 19304–19309 (2008).
[CrossRef]

R. Bouffaron, L. Escoubas, V. Brissonneau, J. J. Simon, G. Berginc, P. Torchio, F. Flory, and P. Masclet, “Spherically shaped micro-structured antireflective surfaces,” Opt. Express 17, 21590–21597 (2009).
[CrossRef] [PubMed]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef] [PubMed]

J. R. Tumbleston, D.-H. Ko, E. T. Samulski, and R. Lopez, “Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers,” Opt. Express 17, 7670–7681 (2009).
[CrossRef] [PubMed]

P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15, 16986–17000 (2007).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
[CrossRef] [PubMed]

J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film silicon solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express 16, 15238–15248 (2008).
[CrossRef] [PubMed]

Y.-C. Lee, C.-F. Huang, J.-Y. Chang, and M.-L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express 16, 7969–7975 (2008).
[CrossRef] [PubMed]

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17, 14312–14321 (2009).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi (2)

A. Bielawny, J. Üpping, P. T. Miclea, R. B. Wehrspohn, C. Rockstuhl, F. Lederer, M. Peters, L. Steidl, R. Zentel, S.-M. Lee, M. Knez, A. Lambertz, and R. Carius, “3D photonic crystal intermediate reflector for micromorph thin-film tandem solar cell,” Phys. Status Solidi 205, 2796–2810 (2008).
[CrossRef]

H. Hoppe, S. Shokhovets, and G. Gobsch, “Inverse relation between photocurrent and absorption layer thickness in polymer solar cells,” Phys. Status Solidi 1, R40–R42 (2007).
[CrossRef]

Prog. Photovolt. (7)

M. J. Kerr, A. Cuevas, and P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination,” Prog. Photovolt. 11, 97–104 (2003)
[CrossRef]

H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt. 14, 13–24 (2006).
[CrossRef]

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovolt. 12, 69–92 (2004).
[CrossRef]

H. W. Schock and R. Noufi, “CIGS-based solar cells for the next millennium,” Prog. Photovolt. 8, 151–160 (2000).
[CrossRef]

I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt. 16, 235–239 (2008).
[CrossRef]

N. Naghavi, S. Spiering, M. Powalla, B. Cavana, and D. Lincot, “High-efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD),” Prog. Photovolt. 11, 437–443 (2003).
[CrossRef]

M. A. Green, “Third generation photovoltaics: ultra-high conversion efficiency at low cost,” Prog. Photovolt. 9, 123–135 (2001).
[CrossRef]

Science (3)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225 (2007).
[CrossRef] [PubMed]

M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science 324, 232–235 (2009).
[CrossRef] [PubMed]

J.-Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317, 222–225(2007).
[CrossRef] [PubMed]

Sol. Energy Mater. (3)

D. P. Gruber, G. Meinhardt, and W. Papousek, “Spatial distribution of light absorption in organic photovoltaic devices,” Sol. Energy Mater. 79, 697–704 (2005).
[CrossRef]

M. A. Green, P. A. Basore, N. Chang, D. Clugston, R. Egan, R. Evans, D. Hogg, S. Jarnason, M. Keevers, P. Lasswell, J. O’Sullivan, U. Schubert, A. Turner, S. R. Wenham, and T. Young, “Crystalline silicon on glass (CSG) thin-film solar cell modules,” Sol. Energy Mater. 77, 857–863 (2004).
[CrossRef]

M. A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Sol. Energy Mater. 74, 181–192 (2003).
[CrossRef]

Sol. Energy Mater. Sol. Cells (12)

C. Strumpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. Delcanizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).
[CrossRef]

F. Roca, G. Sinno, G. Di Francia, P. Prosini, G. Fameli, P. Grillo, A. Citarella, F. Pascarella, and D. Della Sala, “Process development of amorphous silicon crystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells 48, 15–24 (1997).
[CrossRef]

O. Savadogo, “Chemically and electrochemically deposited thin films for solar energy materials,” Sol. Energy Mater. Sol. Cells 52, 361–388 (1998).
[CrossRef]

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells 62, 97–108 (2000).
[CrossRef]

R. Bisconti and H. A. Ossenbrink, “Optical modelling of silicon cells in spherical shape,” Sol. Energy Mater. Sol. Cells 48, 1–6(1997).
[CrossRef]

K. D. Dobson, I. Visoly-Fisher, G. Hodes, and D. Cahen, “Stability of CdTe/CdS thin-film solar cells,” Sol. Energy Mater. Sol. Cells 62, 295–325 (2000).
[CrossRef]

D. P. Gruber, G. Meinhardt, and W. Papousek, “Modelling the light absorption in organic photovoltaic devices,” Sol. Energy Mater. Sol. Cells 87, 215–223 (2005).
[CrossRef]

F. Monestier, J. J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells 91, 405–410 (2007).
[CrossRef]

N.-K. Perssona, M. Schubert, and O. Inganas, “Optical modelling of a layered photovoltaic device with a polyfluorene derivative/fullerene as the active layer,” Sol. Energy Mater. Sol. Cells 83, 169–186 (2004).
[CrossRef]

F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Sol. Energy Mater. Sol. Cells 87, 481–492 (2005).
[CrossRef]

M. Florescu, H. Lee, I. Puscasu, M. Pralle, and L. Florescu, D. Z. Ting, and J. P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Sol. Energy Mater. Sol. Cells 91, 1599–1610 (2007).
[CrossRef]

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93, 1377–1382 (2009).
[CrossRef]

Thin Solid Films (2)

M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451–452, 619–623 (2004).
[CrossRef]

K. Ramanathan, G. Teeter, J. C. Keane, and R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells,” Thin Solid Films 480, 499–502 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of the fiber photovoltaic cell architecture and light illumination, ray diagram of light propagation, confinement of light inside the active medium through reflection from Al, and refractive index difference between the layers [37, 38].

Fig. 2
Fig. 2

(a) Comparison of the short circuit current density (Isc) for the full circumference coated with LiF/Al and 1 / 3 of the circumference coated with LiF/Al on fiber and power conversion efficiency as a function of the angle of incidence with respect to the axis of the optical fiber (fiber diameter 1.5 mm ). (b) Comparison of the Isc (red curve) and power conversion efficiency (blue curve) as a function of the fiber diameter for light incident along the axis and perpendicular to the plane of the cleaved surface of the fiber (only 1 / 3 of the fiber circumference is coated with LiF/Al electrode). Reproduced with permission from the American Institute of Physics.

Fig. 3
Fig. 3

Geometry of the V-shaped light-trapping structure [39]. The active layer (red in the scheme) is very thin compared to the thickness of the transparent substrate. The metal foil and the transparent conductive oxide constitute the back and front electrodes, respectively.

Fig. 4
Fig. 4

Modeled η EQE of an ITO / 100 Å CuPc / 30 Å PTCBI / 150 Å BCP / 1000 Å Ag bilayer device for the planar configuration and in a V-shaped light trap with 2 α = 30 ° . The η EQE of an optimized planar cell of structure ITO / 150 Å CuPc / 100 Å PTCBI / 150 Å BCP / 1000 Å Ag is also shown for comparison [39]. Reproduced with permission from the American Institute of Physics.

Fig. 5
Fig. 5

(a)  J SC of ITO / 500 Å PEDOT : PSS / P 3 HT : PCBM / 1000 Å Al cells as a function of the V-shape opening angle 2 α [39]. The active layer thicknesses are 70 (square), 110 (circle), and 170 nm (triangle). (b)  V OC (filled symbols) and η P (open symbols) of the same cells [39]. The lines are guides for the eye. Reproduced with permission from the American Institute of Physics.

Fig. 6
Fig. 6

Scheme of the electromagnetic field in a thin-film solar cell. The film thicknesses have to be optimized so that the maximal electromagnetic field value is localized in the active layer. Thus, the maximal light absorption occurs in the active layer.

Fig. 7
Fig. 7

Scheme of a thin-film solar cell comprising an angle selective filter (rugate filter) and a Lambertian scatterer. The active layer of the cell is a 10 μm thick Si film.

Fig. 8
Fig. 8

(a) Transmission of unpolarized light of the ideal wavelength and an angle selective filter [48]. (b) Optimized refractive index profile of the rugate filter (the z axis corresponds to the light propagation direction) [48]. (c) Angle-resolved transmission spectrum of the rugate filter [48]. Reproduced with permission from the Optical Society of America.

Fig. 9
Fig. 9

Device structure of the polymer tandem solar cell (ITO). The absorption band of the P3HT complements the absorption band of PCPDTBT in visible range.

Fig. 10
Fig. 10

(a) Device structure of the solar cell comprising the light imprinted grating in the azopolymer film. The active layer is a classical CuPc and C60 heterojunction. (b) Reflection and EQE spectra for a cell patterned with a grating period of 510 nm . The corresponding spectra for a planar cell are also given for comparison [60]. Reproduced with permission from the American Institute of Physics.

Fig. 11
Fig. 11

(a) Device structure of the back reflector combining reflection grating and DBR. (b) J-V characteristics for solar cells with different back structures. Reproduced with permission from the American Institute of Physics.

Fig. 12
Fig. 12

(a) Scanning electron micrograph of a hexagonal array of solar cell bulk organic heterojunction. Reproduced with permission from the American Chemical Society. (b) Theoretical spectral absorption at normal incidence for 400 nm 1D photonic crystal device compared to planar control cell for both s- and p-polarized light. Reproduced with permission from the American Institute of Physics.

Fig. 13
Fig. 13

(a) Photonic band diagram of a photonic crystal. The dispersion curves are drawn versus the high symmetry directions of the first Brillouin zone. Slow optical Bloch modes can be coupled at the extrema of flat dispersion curves, as shown on the graph (orange circle). (b) Computed P3HT:PCBM blend bulk heterostructure absorption compared to P3HT:PCBM photonic crystal-ordered heterostructure absorption. A strong absorption enhancement is demonstrated in the case of the P3HT:PCBM photonic crystal. Reproduced with permission from the American Institute of Physics.

Fig. 14
Fig. 14

(a) SOI with 1.25 μm active Si. (b) Wafer-based 300 μm planar Si cell. Reproduced with permission from the American Institute of Physics.

Fig. 15
Fig. 15

SEM pictures showing silver metal particles corresponding to a mass thickness of (a)  14 nm , (b)  16 nm , (c)  18 nm , and (d)  27 nm of silver [77]. Reproduced with permission from the American Institute of Physics.

Fig. 16
Fig. 16

(a) Device fabricated with a thin silver film deposited onto ITO on a glass substrate. PEDOT:PSS was spun onto the silver layer followed by P3HT:PCBM and a barium/aluminum back electrode. (b) FESEM micrograph of a representative 2 nm silver film on ITO. (c) IPCE spectra of devices containing 1, 2, 3, and 4 nm silver films demonstrate the increased photocurrent at wavelengths over 500 nm . The strong absorption of the silver films on the IPCE is also seen as a dip centered near 450 nm . Reproduced with permission from the American Institute of Physics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q ( z , λ ) = α ( λ ) n i / n 0 | E ( z ) / E 0 | 2 ,

Metrics