Abstract

Organic layers can be used to realize special functions in optical interference coatings. Suitable compounds for such layers were thermally evaporated and characterized. A plasma etching procedure was applied to produce nanostructures on top of the organic layers to reduce their effective refractive indices. Broadband antireflective coatings were obtained by combining these artificial low-index layers with conventionally prepared interference stacks.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Willey, Practical Design and Production of Thin Films(Marcel Dekker, 2002).
    [CrossRef]
  2. T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
    [CrossRef]
  3. Z. Z. You and G. J. Hua, “Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique,” Vacuum 83, 984–988 (2009).
    [CrossRef]
  4. A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
    [CrossRef]
  5. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108(2007).
    [CrossRef] [PubMed]
  6. Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
    [CrossRef]
  7. B. E. Yoldas, “Investigations of porous oxides as an antireflective coating for glass surfaces,” Appl. Opt. 19, 1425–1429 (1980).
    [CrossRef] [PubMed]
  8. K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
    [CrossRef]
  9. D. A. C. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen,” Ann. Phys. 24, 636–643 (1935).
    [CrossRef]
  10. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
    [CrossRef]
  11. J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. 3. experimental results obtained with the use of Reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006).
    [CrossRef] [PubMed]
  12. P. G. Verly, J. A. Dobrowolski, and R. R. Willey, “Fourier-transform method for the design of wideband anti-reflection coatings,” Appl. Opt. 31, 3836–3846 (1992).
    [CrossRef] [PubMed]
  13. R. Willey, “Predicting achievable design performance of broadband antireflection coatings,” Appl. Opt. 32, 5447–5451 (1993).
    [CrossRef] [PubMed]
  14. M. J. Minot, “The angular reflectance of single-layer gradient refractive index films,” J. Opt. Soc. Am. 67, 1046–1050 (1977).
    [CrossRef]
  15. U. Schulz, “Antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17, 8704–8708 (2009).
    [CrossRef] [PubMed]
  16. S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
    [CrossRef]
  17. OptiChar software, http://www.optilayer.com.

2009 (2)

Z. Z. You and G. J. Hua, “Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique,” Vacuum 83, 984–988 (2009).
[CrossRef]

U. Schulz, “Antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express 17, 8704–8708 (2009).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

J. A. Dobrowolski, Y. Guo, T. Tiwald, P. Ma, and D. Poitras, “Toward perfect antireflection coatings. 3. experimental results obtained with the use of Reststrahlen materials,” Appl. Opt. 45, 1555–1562 (2006).
[CrossRef] [PubMed]

T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
[CrossRef]

2004 (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
[CrossRef]

2000 (1)

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

1995 (1)

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

1993 (1)

1992 (2)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[CrossRef]

P. G. Verly, J. A. Dobrowolski, and R. R. Willey, “Fourier-transform method for the design of wideband anti-reflection coatings,” Appl. Opt. 31, 3836–3846 (1992).
[CrossRef] [PubMed]

1980 (1)

1977 (1)

1935 (1)

D. A. C. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen,” Ann. Phys. 24, 636–643 (1935).
[CrossRef]

Brett, M. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Bruggeman, D. A. C.

D. A. C. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen,” Ann. Phys. 24, 636–643 (1935).
[CrossRef]

Denga, Z.

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

Dew, S. K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Dobrowolski, J. A.

Fanb, B.

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

Friedrich, L. J.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Guo, Y.

Hua, G. J.

Z. Z. You and G. J. Hua, “Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique,” Vacuum 83, 984–988 (2009).
[CrossRef]

Itoh, T.

T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
[CrossRef]

Kaiser, N.

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108(2007).
[CrossRef] [PubMed]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
[CrossRef]

Kaless, A.

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
[CrossRef]

Leitel, R.

Ma, P.

Macleod, A.

A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Minot, M. J.

Mizutania, T.

T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
[CrossRef]

Mor, T.

T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
[CrossRef]

Munzert, P.

U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, and A. Tünnermann, “Antireflection of transparent polymers by advanced plasma etching procedures,” Opt. Express 15, 13108(2007).
[CrossRef] [PubMed]

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
[CrossRef]

Poitras, D.

Pongratz, S.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[CrossRef]

Robbie, K.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Schulz, U.

Smy, T.

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Tiwald, T.

Tünnermann, A.

Verly, P. G.

Wendling, I.

Willey, R.

Willey, R. R.

Yoldas, B. E.

You, Z. Z.

Z. Z. You and G. J. Hua, “Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique,” Vacuum 83, 984–988 (2009).
[CrossRef]

Zhang, F.

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

Zhoub, D.

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

Zöller, A.

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[CrossRef]

Ann. Phys. (1)

D. A. C. Bruggeman, “Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen,” Ann. Phys. 24, 636–643 (1935).
[CrossRef]

Appl. Opt. (4)

Colloids Surf. A Physicochem. Eng. Aspects (1)

T. Itoh, T. Mizutania, and T. Mor, “Electroluminescent mechanism of organic light-emitting diodes with blue-emitting Alq,” Colloids Surf. A Physicochem. Eng. Aspects 284–285, 594–598 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (2)

S. Pongratz and A. Zöller, “Plasma ion assisted deposition: a promising technique for optical coatings,” J. Vac. Sci. Technol. A 10, 1897–1904 (1992).
[CrossRef]

K. Robbie, L. J. Friedrich, S. K. Dew, T. Smy, and M. J. Brett, “Fabrication of thin films with highly porous microstructures,” J. Vac. Sci. Technol. A 13, 1032–1035 (1995).
[CrossRef]

Mater. Sci. Eng. B (1)

Z. Denga, B. Fanb, D. Zhoub, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B 78, 135–139 (2000).
[CrossRef]

Opt. Express (2)

Surf. Coat. Techn. (1)

A. Kaless, P. Munzert, U. Schulz, and N. Kaiser, “NANO-motheye antireflection pattern by plasma treatment of polymers,” Surf. Coat. Techn. 200, 58–61 (2004).
[CrossRef]

Vacuum (1)

Z. Z. You and G. J. Hua, “Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique,” Vacuum 83, 984–988 (2009).
[CrossRef]

Other (3)

R. Willey, Practical Design and Production of Thin Films(Marcel Dekker, 2002).
[CrossRef]

OptiChar software, http://www.optilayer.com.

A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Chemical structures of the organic materials.

Fig. 2
Fig. 2

Transmission versus wavelength of the organic thin films deposited on fused silica.

Fig. 3
Fig. 3

Optical constants n, k versus wavelength of the organic thin films deduced from experiments.

Fig. 4
Fig. 4

Reflection versus wavelength of the organic films after plasma etching (including backside reflection).

Fig. 5
Fig. 5

Scanning electron micrographs of the organic nanostructures exhibiting the reflectance shown in Fig. 4.

Fig. 6
Fig. 6

Refractive-index profiles for the designs used for the experiments.

Fig. 7
Fig. 7

Calculated and measured reflection for design 1 (without backside reflection).

Fig. 8
Fig. 8

Calculated and measured reflection for design 2 (without backside reflection).

Tables (1)

Tables Icon

Table 1 Properties of the Organic Thin-Film Materials

Metrics