Abstract

A thin dielectric IR-transparent interlayer is introduced between an IR-transparent medium of incidence and a thin metal film. The interlayer increases the intensity of light on the metal/sample interface at certain wavenumbers. By computations, the reflectivities of the system “calcium fluoride (CaF2)– germanium (Ge)–gold (Au) sample” are analyzed as a function of incidence angle and Ge layer thickness. Absorbance spectra with acetonitrile as a sample are recorded for different angles of incidence and polarizations and compared to computations. A characteristic feature of the absorbance spectra is the occurrence of interference fringes distributed between 1000 and 6000cm1, i.e., over the complete mid-IR wavelength range into the near-IR. These fringes could be used in analytical spectroscopy.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Yeh, Optical Waves in Layered Media, 2nd ed. (Wiley, 2005).
  2. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957).
    [CrossRef]
  3. B. V. Landau and P. H. Lissberger, “Theory of induced-transmission filters in terms of the concept of equivalent layers,” J. Opt. Soc. Am. 62, 1258–1264 (1972).
    [CrossRef]
  4. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
    [CrossRef] [PubMed]
  5. See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
    [CrossRef]
  6. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).
  7. E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
    [PubMed]
  8. M. Boncheva and H. Vogel, “Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation,” Biophys. J. 73, 1056–1072 (1997).
    [CrossRef] [PubMed]
  9. A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
    [CrossRef] [PubMed]
  10. R. F. Aroca, D. J. Ross, and D. Concepcion, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58, 324A–338A(2004).
    [CrossRef] [PubMed]
  11. K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388, 47–54 (2007).
    [CrossRef] [PubMed]
  12. M. Reithmeier and A. Erbe, “Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
    [CrossRef] [PubMed]
  13. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [CrossRef]
  14. A. Erbe, “Reflcalc,” http://home.arcor.de/aerbe/en/prog/a/reflcalc.html.
  15. J. Lekner, Theory of Reflection, 1st ed. (Kluwer, 1987).
  16. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
    [CrossRef]
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1998), Vols. I–III.
  18. J. E. Bertie and Z. Lan, “Liquid water-acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities,” J. Phys. Chem. B 101, 4111–4119 (1997).
    [CrossRef]

2010 (1)

M. Reithmeier and A. Erbe, “Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[CrossRef] [PubMed]

2007 (2)

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388, 47–54 (2007).
[CrossRef] [PubMed]

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

2006 (1)

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

2005 (2)

P. Yeh, Optical Waves in Layered Media, 2nd ed. (Wiley, 2005).

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

2004 (1)

2003 (1)

See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
[CrossRef]

1999 (1)

E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
[PubMed]

1998 (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1998), Vols. I–III.

1997 (2)

J. E. Bertie and Z. Lan, “Liquid water-acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities,” J. Phys. Chem. B 101, 4111–4119 (1997).
[CrossRef]

M. Boncheva and H. Vogel, “Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation,” Biophys. J. 73, 1056–1072 (1997).
[CrossRef] [PubMed]

1996 (1)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

1987 (1)

J. Lekner, Theory of Reflection, 1st ed. (Kluwer, 1987).

1972 (1)

1967 (1)

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

1957 (1)

Aroca, R. F.

Ataka, K.

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388, 47–54 (2007).
[CrossRef] [PubMed]

Berning, P. H.

Bertie, J. E.

J. E. Bertie and Z. Lan, “Liquid water-acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities,” J. Phys. Chem. B 101, 4111–4119 (1997).
[CrossRef]

Boncheva, M.

M. Boncheva and H. Vogel, “Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation,” Biophys. J. 73, 1056–1072 (1997).
[CrossRef] [PubMed]

Bushby, R. J.

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

Chernyshova, I. V.

See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
[CrossRef]

Concepcion, D.

Erbe, A.

M. Reithmeier and A. Erbe, “Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[CrossRef] [PubMed]

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

A. Erbe, “Reflcalc,” http://home.arcor.de/aerbe/en/prog/a/reflcalc.html.

Evans, S. D.

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

Goormaghtigh, E.

E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
[PubMed]

Harrick, N. J.

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

Heberle, J.

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388, 47–54 (2007).
[CrossRef] [PubMed]

Hooper, I. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Jeuken, L. J. C.

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

Lan, Z.

J. E. Bertie and Z. Lan, “Liquid water-acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities,” J. Phys. Chem. B 101, 4111–4119 (1997).
[CrossRef]

Landau, B. V.

Lekner, J.

J. Lekner, Theory of Reflection, 1st ed. (Kluwer, 1987).

Lissberger, P. H.

Palik, E. D.

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1998), Vols. I–III.

Preist, T. W.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Raussens, V.

E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
[PubMed]

Reithmeier, M.

M. Reithmeier and A. Erbe, “Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[CrossRef] [PubMed]

Ross, D. J.

Ruysschaert, J.-M.

E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
[PubMed]

Sambles, J. R.

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Schubert, M.

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

Skryshevsky, V. A.

See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
[CrossRef]

Tolstoy, V. P.

See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
[CrossRef]

Turner, A. F.

Vogel, H.

M. Boncheva and H. Vogel, “Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation,” Biophys. J. 73, 1056–1072 (1997).
[CrossRef] [PubMed]

Yeh, P.

P. Yeh, Optical Waves in Layered Media, 2nd ed. (Wiley, 2005).

Anal. Bioanal. Chem. (1)

K. Ataka and J. Heberle, “Biochemical applications of surface-enhanced infrared absorption spectroscopy,” Anal. Bioanal. Chem. 388, 47–54 (2007).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Biochim. Biophys. Acta (1)

E. Goormaghtigh, V. Raussens, and J.-M. Ruysschaert, “Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes,” Biochim. Biophys. Acta 1422, 105–185 (1999).
[PubMed]

Biophys. J. (1)

M. Boncheva and H. Vogel, “Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation,” Biophys. J. 73, 1056–1072 (1997).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Phys. Chem. B (2)

A. Erbe, R. J. Bushby, S. D. Evans, and L. J. C. Jeuken, “Tethered bilayer lipid membranes studied by simultaneous attenuated total reflectance infrared spectroscopy and electrochemical impedance spectroscopy,” J. Phys. Chem. B 111, 3515–3524 (2007).
[CrossRef] [PubMed]

J. E. Bertie and Z. Lan, “Liquid water-acetonitrile mixtures at 25 °C: the hydrogen-bonded structure studied through infrared absolute integrated absorption intensities,” J. Phys. Chem. B 101, 4111–4119 (1997).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

M. Reithmeier and A. Erbe, “Dielectric interlayers increasing the transparency of metal films for mid-infrared attenuated total reflection spectroscopy,” Phys. Chem. Chem. Phys. 12, 14798–14803 (2010).
[CrossRef] [PubMed]

Phys. Rev. B (1)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Other (6)

A. Erbe, “Reflcalc,” http://home.arcor.de/aerbe/en/prog/a/reflcalc.html.

J. Lekner, Theory of Reflection, 1st ed. (Kluwer, 1987).

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1998), Vols. I–III.

See, e.g., V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky, Handbook of Infrared Spectroscopy of Ultrathin Films (Wiley, 2003).
[CrossRef]

N. J. Harrick, Internal Reflection Spectroscopy (Wiley, 1967).

P. Yeh, Optical Waves in Layered Media, 2nd ed. (Wiley, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic view of the setup used in the experiment, including the optical layer system.

Fig. 2
Fig. 2

Computed reflectivity spectra R ( s ) with s polarization [(a) and (b)] and R ( p ) with p polarization [(c) and (d)] for different angles of incidence for CaF 2 –Ge [ d Ge = 1000 nm , (a) and (c), and d Ge = 2500 nm , (b) and (d)]–Au ( d Au = 20 nm ) sample. The reflectivities are shown on a gray scale as indicated on the right-hand side of the plots.

Fig. 3
Fig. 3

Absorbance spectra [s polarization, (a) and (b), and p polarization, (c) and (d)] for CaF 2 –Ge–Au–acetonitrile (reference: CaF 2 –Ge–Au–air), d Ge 900 nm , d Au = 20 nm . Computed values [(a) and (c)] are compared with measured values [(b) and (d)] for angles of incidence between 30 ° and 40 ° .

Fig. 4
Fig. 4

Absorbance spectra [s polarization, (a) and (b), and p polarization, (c) and (d)] for CaF 2 –Ge–Au–acetonitrile (reference: CaF 2 –Ge–Au–air), d Ge 900 nm , d Au = 20 nm . Computed values [(a) and (c)] are compared with measured values [(b) and (d)] for angles of incidence from 44 ° to 64 ° as indicated in the graph.

Fig. 5
Fig. 5

Comparison of the respective maximum or minimum absorbance value of the peak around 4500 cm 1 between theoretical and experimental values from two different layer systems for (a) s polarization and (b) p polarization. Error bars indicate the errors for several measurements of the same layer preparation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( ν ˜ ) = log 10 R smp ( q ) ( ν ˜ ) R ref ( q ) ( ν ˜ ) .

Metrics