Abstract

We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
    [CrossRef]
  2. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
    [CrossRef]
  3. G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
    [CrossRef]
  4. M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
    [CrossRef]
  5. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
    [CrossRef]
  6. S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
    [CrossRef]
  7. J. Neauport, P. Cormont, P. Legros, C. Ambard, and J. Destribats, “Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy,” Opt. Express 17, 3543–3554 (2009).
    [CrossRef] [PubMed]
  8. Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
    [CrossRef]
  9. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some crystalline materials,” Appl. Opt. 44, 2241–2249 (2005).
    [CrossRef] [PubMed]
  10. J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
    [CrossRef]
  11. D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
    [CrossRef]
  12. T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
    [CrossRef]
  13. A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
    [CrossRef]
  14. R. S. Polvani and C. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (NIST, 1990).
  15. F. Yang, “Effect of subsurface damage on indentation behavior of ground ULE™ glass,” J. Non-Cryst. Solids 351, 3861–3865(2005).
    [CrossRef]
  16. F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004).
    [CrossRef]
  17. S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
    [CrossRef]
  18. J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
    [CrossRef]
  19. S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
    [CrossRef]
  20. G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
    [CrossRef]
  21. J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
    [CrossRef]
  22. J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
    [CrossRef]
  23. C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
    [CrossRef]

2010

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

2009

2008

S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
[CrossRef]

2006

S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

2005

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some crystalline materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef] [PubMed]

F. Yang, “Effect of subsurface damage on indentation behavior of ground ULE™ glass,” J. Non-Cryst. Solids 351, 3861–3865(2005).
[CrossRef]

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

2004

F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004).
[CrossRef]

2003

J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
[CrossRef]

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

2002

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

2001

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

2000

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

1999

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

1997

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

1995

Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
[CrossRef]

1994

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

1987

G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
[CrossRef]

Ambard, C.

Arrasmith, S. R.

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Babini, G. N.

G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
[CrossRef]

Battersby, C. L.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

Bellosi, A.

G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
[CrossRef]

Bercegol, H.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Black, D.

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

Bradby, J. E.

S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
[CrossRef]

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

Braun, L.

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

Burning, J. H.

J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
[CrossRef]

Cleaveland, E. E.

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Cohen, S. J.

Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
[CrossRef]

Cormont, P.

Courchinoux, R.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Davis, P. J.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Destribats, J.

Donval, T.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

Evans, C.

R. S. Polvani and C. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (NIST, 1990).

Fei, P.

F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004).
[CrossRef]

Feit, M. D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Furgiuele, F.

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

Galassi, C.

G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
[CrossRef]

Golini, D.

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Hockey, B.

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

Ikeda, M.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

Jacobs, S. D.

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some crystalline materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef] [PubMed]

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Jagadish, C.

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

Jang, J.

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

Jian, S. R.

S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
[CrossRef]

Josse, M.

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Josse, M. A.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

Juang, J. Y.

S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
[CrossRef]

Kordonski, W. I.

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Kozlowski, M. R.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

Kucheyev, S. O.

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

Kurihara, K.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

Lai, Y. S.

S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
[CrossRef]

Lamaignére, L.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Lambropoulos, J. C.

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, “Subsurface damage in some crystalline materials,” Appl. Opt. 44, 2241–2249 (2005).
[CrossRef] [PubMed]

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Lance, M. J.

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

Legros, P.

Leonardi, A.

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

Liao, Z. M.

Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
[CrossRef]

Loiseau, M.

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Maier, R. L.

J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
[CrossRef]

Makino, E.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

Malshe, A. P.

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

Maltsev, A.

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Miller, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Miller, P. E.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Morchain, J.-M.

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Munroe, P.

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

Neauport, J.

Ono, A.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

Pharr, G. M.

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

Phillips, M. R.

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

Polvani, R.

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

Polvani, R. S.

R. S. Polvani and C. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (NIST, 1990).

Pussacq, B.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

Randi, J. A.

Razé, G.

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

Ruffell, S.

S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
[CrossRef]

Rullier, J. L.

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

Salamo, G.

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

Sheehan, L. M.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

Shibata, T.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

Stach, E. A.

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

Steele, R.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Suratwala, T.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Suratwala, T. I.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Swain, M. V.

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

Syngellakis, S.

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

Taylor, C. R.

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

Taylor, J. R.

Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
[CrossRef]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wang, J.

J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
[CrossRef]

Wen, S. Q.

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

White, G.

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

Williams, J. S.

S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
[CrossRef]

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

Wong, L.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Wong, L. L.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

Wong-Leung, J.

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

Wood, R. J. K.

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

Yang, F.

F. Yang, “Effect of subsurface damage on indentation behavior of ground ULE™ glass,” J. Non-Cryst. Solids 351, 3861–3865(2005).
[CrossRef]

F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Shibata, A. Ono, K. Kurihara, E. Makino, and M. Ikeda, “Cross-section transmission electron microscope observation of diamond-turned single-crystal Si surfaces,” Appl. Phys. Lett. 65, 2553–2555 (1994).
[CrossRef]

J. E. Bradby, J. S. Williams, J. Wong-Leung, M. V. Swain, and P. Munroe, “Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon,” Appl. Phys. Lett. 77, 3749–3751 (2000).
[CrossRef]

S. Ruffell, J. E. Bradby, and J. S. Williams, “High pressure crystalline phase formation during nanoindentation: amorphous versus crystalline silicon,” Appl. Phys. Lett. 89, 091919(2006).
[CrossRef]

J. Jang, M. J. Lance, S. Q. Wen, and G. M. Pharr, “Evidence for nanoindentation-induced phase transformations in germanium,” Appl. Phys. Lett. 86, 131907 (2005).
[CrossRef]

J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe, and M. R. Phillips, “Contact-induced defect propagation in ZnO,” Appl. Phys. Lett. 80, 4537–4539 (2002).
[CrossRef]

C. R. Taylor, E. A. Stach, G. Salamo, and A. P. Malshe, “Nanoscale dislocation patterning by ultralow load indentation,” Appl. Phys. Lett. 87, 073108 (2005).
[CrossRef]

Eng. Frac. Mech.

A. Leonardi, F. Furgiuele, R. J. K. Wood, and S. Syngellakis, “Numerical analysis of brittle materials fractured by sharp indenters,” Eng. Frac. Mech. 77, 264–276 (2010).
[CrossRef]

J. Appl. Phys.

S. R. Jian, J. Y. Juang, and Y. S. Lai, “Cross-sectional transmission electron microscopy observations of structural damage in Al0.16Ga0.84N thin film under contact loading,” J. Appl. Phys. 103, 033503 (2008).
[CrossRef]

J. Mater. Sci.

G. N. Babini, A. Bellosi, and C. Galassi, “Characterization of hot-pressed silicon nitride-based materials by microhardness measurements,” J. Mater. Sci. 221687–1693 (1987).
[CrossRef]

J. Non-Cryst. Solids

F. Yang, “Effect of subsurface damage on indentation behavior of ground ULE™ glass,” J. Non-Cryst. Solids 351, 3861–3865(2005).
[CrossRef]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006).
[CrossRef]

Opt. Express

Proc. SPIE

Z. M. Liao, S. J. Cohen, and J. R. Taylor, “Total internal reflection microscopy (TIRM) as a nondestructive subsurface damage assessment tool,” Proc. SPIE 2428, 43–53 (1995).
[CrossRef]

J. Wang, R. L. Maier, and J. H. Burning, “Surface characterization of optically polished CaF2 crystal by quasi-Brewster angle technique,” Proc. SPIE 5188, 106–114 (2003).
[CrossRef]

D. Black, R. Polvani, L. Braun, B. Hockey, and G. White, “Detection of subsurface damage: studies in sapphire,” Proc. SPIE 3060, 102–114 (1997).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, “The distribution of subsurface damage in fused silica,” Proc. SPIE 5991, 599101 (2005).
[CrossRef]

G. Razé, J.-M. Morchain, M. Loiseau, L. Lamaignére, M. Josse, H. Bercegol, “Parametric study of the growth of damage sites on the rear surface of fused silica windows,” Proc. SPIE 4932, 127–135 (2003).
[CrossRef]

M. A. Josse, H. Bercegol, R. Courchinoux, T. Donval, L. Lamaignére, B. Pussacq, and J. L. Rullier, “Study of the evolution of mechanical defects on silica samples under laser irradiation at 355nm,” Proc. SPIE 6403, 64030E (2006).
[CrossRef]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999).
[CrossRef]

S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, and E. E. Cleaveland, “The use of magnetorheological finishing to relieve residual stress and subsurface,” Proc. SPIE 4451, 286–294 (2001).
[CrossRef]

Semicond. Sci. Technol.

F. Yang and P. Fei, “Microindentation of ground silicon wafers,” Semicond. Sci. Technol. 19, 1165–1168 (2004).
[CrossRef]

Other

R. S. Polvani and C. Evans, “Microindentation as a technique for assessing subsurface damage in optics,” Natl. Inst. Stand. Technol. Spec. Publ. 801, 25–38 (NIST, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Atomic force microscope measurements of the two kinds of samples. (a) The original surface roughness, 0.2 nm , was increased to 0.757 nm to eliminate the influence of roughness during indentation. (b) Sample 2 had a little lower roughness, 0.509 nm , but exhibited a much different surface morphology.

Fig. 2
Fig. 2

Subsurface morphology of the two kinds of samples at different etching depth. (a) After the removal of the hydrated layer, some slight scratches were found and etched away; subsequently, the bulk material was obtained at a 600 nm etching depth. (b) The severe SSD of sample 2 in terms of the interlaced scratches and digs was exposed and further enlarged by an acid solution. New defects were exposed continuously until the 200 μm depth.

Fig. 3
Fig. 3

Load-displacement curves of the two kinds of samples. No pop-in or pop-out events or sudden changes occurred. The nine curves are nearly overlapped for both samples.

Fig. 4
Fig. 4

Relationship between the displacement into the surface and the ratio of displacement over the load on the surface. Sample 2 exhibits a lower ratio than sample 1 among the three indentation tests, which suggests that the samples with more severe SSD defects may be harder to indent.

Fig. 5
Fig. 5

Modulus and hardness of the two samples calculated over the defined range and unload area. The modulus locations of sample 2 are higher than those of sample 1, while the hardness locations are interlaced.

Fig. 6
Fig. 6

Indented images of the two samples at the same load. (a) One area is broken down and marked in a blue circle. (b) Five areas are broken down, and one area is collapsed, marked in a red circle, when the load approaches the collapse threshold of the material.

Tables (2)

Tables Icon

Table 1 Preparation of the Two Samples by Process Control a

Tables Icon

Table 2 Measuring Data of the Samples by Different Indenters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P = K d n ,

Metrics