Abstract

With specific modeling, measurement, and analysis procedures, it is possible to predict, define, and control roughness structures for tailored wetting properties of optical coatings. Examples are given for superhydrophobic and hydrophilic sol-gel layers on glass substrate.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolfram, R. Faust, and Wetting, Spreading and Adhesion, J.F.Padday, ed. (Academic, 1987), pp. 213–222.
  2. M. Flemming and A. Duparré, “Design and characterization of nanostructured ultrahydrophobic coatings,” Appl. Opt. 45, 1397–1401 (2006).
    [CrossRef] [PubMed]
  3. P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
    [CrossRef]
  4. M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
    [CrossRef]
  5. J. C. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” J. Phys. III 4, 1231–1242 (1994).
    [CrossRef]
  6. K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
    [CrossRef]
  7. M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
    [CrossRef]
  8. A. Marmur, “Soft contact: measurement and interpretation of contact angles,” Soft Matter 2, 12–17 (2006).
    [CrossRef]
  9. A. Marmur, “Equilibrium contact angles: theory and measurement,” Colloids Surf. A 116, 55–61 (1996).
    [CrossRef]
  10. E. Bittoun and A. Marmur, “Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies,” J. Adhes. Sci. Technol. 23, 401–411 (2009).
    [CrossRef]
  11. D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
    [CrossRef]
  12. A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” Appl. Opt. 50, to appear in the same feature issue.
    [PubMed]
  13. J. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Press Monograph Vol. PM24SC (SPIE, 1995).
    [CrossRef]
  14. M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
    [CrossRef]
  15. A. Marmur, “From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials,” Langmuir 24, 7573–7579(2008).
    [CrossRef] [PubMed]
  16. A. Marmur, “The lotus effect: superhydrophobicity and metastability,” Langmuir 20, 3517–3519 (2004).
    [CrossRef]
  17. F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
    [CrossRef] [PubMed]
  18. W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
    [CrossRef]
  19. W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
    [CrossRef]
  20. R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–944 (1936).
    [CrossRef]
  21. A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
    [CrossRef]
  22. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171(2002).
    [CrossRef] [PubMed]
  23. R. E. Johnson, R. H. Dettre, and R. F. Gould, “1. Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 112–135.
    [CrossRef]
  24. R. H. DettreR. E. Johnson, and R. F. Gould, “2. Contact angles measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 136–144.
    [CrossRef]

2009

M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
[CrossRef]

E. Bittoun and A. Marmur, “Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies,” J. Adhes. Sci. Technol. 23, 401–411 (2009).
[CrossRef]

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

2008

A. Marmur, “From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials,” Langmuir 24, 7573–7579(2008).
[CrossRef] [PubMed]

P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
[CrossRef]

2007

W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
[CrossRef]

2006

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

M. Flemming and A. Duparré, “Design and characterization of nanostructured ultrahydrophobic coatings,” Appl. Opt. 45, 1397–1401 (2006).
[CrossRef] [PubMed]

A. Marmur, “Soft contact: measurement and interpretation of contact angles,” Soft Matter 2, 12–17 (2006).
[CrossRef]

2005

K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
[CrossRef]

2004

A. Marmur, “The lotus effect: superhydrophobicity and metastability,” Langmuir 20, 3517–3519 (2004).
[CrossRef]

2003

M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
[CrossRef]

2002

1997

M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
[CrossRef]

1996

A. Marmur, “Equilibrium contact angles: theory and measurement,” Colloids Surf. A 116, 55–61 (1996).
[CrossRef]

1994

J. C. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” J. Phys. III 4, 1231–1242 (1994).
[CrossRef]

1944

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

1936

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–944 (1936).
[CrossRef]

Amal, R.

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

Bartolo, D.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Baxter, S.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Bennett, J. M.

Bittoun, E.

E. Bittoun and A. Marmur, “Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies,” J. Adhes. Sci. Technol. 23, 401–411 (2009).
[CrossRef]

Bouamrirene, F.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Brinker, J. C.

J. C. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” J. Phys. III 4, 1231–1242 (1994).
[CrossRef]

Buguin, A.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Cassie, A. B. D.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Cebeci, F. C.

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Chiang, K.

W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
[CrossRef]

Cohen, R. E.

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Coriand, L.

M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
[CrossRef]

Dettre, R. H.

R. E. Johnson, R. H. Dettre, and R. F. Gould, “1. Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 112–135.
[CrossRef]

R. H. DettreR. E. Johnson, and R. F. Gould, “2. Contact angles measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 136–144.
[CrossRef]

Duparré, A.

M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
[CrossRef]

M. Flemming and A. Duparré, “Design and characterization of nanostructured ultrahydrophobic coatings,” Appl. Opt. 45, 1397–1401 (2006).
[CrossRef] [PubMed]

M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
[CrossRef]

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171(2002).
[CrossRef] [PubMed]

M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
[CrossRef]

A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” Appl. Opt. 50, to appear in the same feature issue.
[PubMed]

Faust, R.

E. Wolfram, R. Faust, and Wetting, Spreading and Adhesion, J.F.Padday, ed. (Academic, 1987), pp. 213–222.

Ferre-Borrull, J.

Flemming, M.

M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
[CrossRef]

M. Flemming and A. Duparré, “Design and characterization of nanostructured ultrahydrophobic coatings,” Appl. Opt. 45, 1397–1401 (2006).
[CrossRef] [PubMed]

M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
[CrossRef]

M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
[CrossRef]

Gan, W. Y.

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
[CrossRef]

Gliech, S.

Gould, R. F.

R. E. Johnson, R. H. Dettre, and R. F. Gould, “1. Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 112–135.
[CrossRef]

R. H. DettreR. E. Johnson, and R. F. Gould, “2. Contact angles measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 136–144.
[CrossRef]

Hauptvogel, M.

A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” Appl. Opt. 50, to appear in the same feature issue.
[PubMed]

Hurd, A. J.

J. C. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” J. Phys. III 4, 1231–1242 (1994).
[CrossRef]

Johnson, R. E.

R. H. DettreR. E. Johnson, and R. F. Gould, “2. Contact angles measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 136–144.
[CrossRef]

R. E. Johnson, R. H. Dettre, and R. F. Gould, “1. Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 112–135.
[CrossRef]

Katata, N.

K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
[CrossRef]

Lam, S. W.

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
[CrossRef]

Law, W. S.

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

Marmur, A.

E. Bittoun and A. Marmur, “Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies,” J. Adhes. Sci. Technol. 23, 401–411 (2009).
[CrossRef]

A. Marmur, “From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials,” Langmuir 24, 7573–7579(2008).
[CrossRef] [PubMed]

A. Marmur, “Soft contact: measurement and interpretation of contact angles,” Soft Matter 2, 12–17 (2006).
[CrossRef]

A. Marmur, “The lotus effect: superhydrophobicity and metastability,” Langmuir 20, 3517–3519 (2004).
[CrossRef]

A. Marmur, “Equilibrium contact angles: theory and measurement,” Colloids Surf. A 116, 55–61 (1996).
[CrossRef]

Minami, T.

K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
[CrossRef]

Moulinet, S.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Newton, M. I.

P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
[CrossRef]

Notni, G.

Reihs, K.

M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
[CrossRef]

Roach, P.

P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
[CrossRef]

Roder, K.

M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
[CrossRef]

Rubner, M. F.

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Scott, J.

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

Shirtcliffe, N. J.

P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
[CrossRef]

Silberzan, P.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Steinert, J.

Stover, J.

J. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Press Monograph Vol. PM24SC (SPIE, 1995).
[CrossRef]

Tadanaga, K.

K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
[CrossRef]

Verneuil, E.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

von Finck, A.

A. von Finck, M. Hauptvogel, and A. Duparré, “Instrument for close-to-process light scatter measurements of thin film coatings and substrates,” Appl. Opt. 50, to appear in the same feature issue.
[PubMed]

Wenzel, R. N.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–944 (1936).
[CrossRef]

Wetting,

E. Wolfram, R. Faust, and Wetting, Spreading and Adhesion, J.F.Padday, ed. (Academic, 1987), pp. 213–222.

Wolfram, E.

E. Wolfram, R. Faust, and Wetting, Spreading and Adhesion, J.F.Padday, ed. (Academic, 1987), pp. 213–222.

Wu, Z.

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Zhai, L.

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Colloids Surf. A

A. Marmur, “Equilibrium contact angles: theory and measurement,” Colloids Surf. A 116, 55–61 (1996).
[CrossRef]

Europhys. Lett.

D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, and S. Moulinet, “Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces,” Europhys. Lett. 74, 299–305 (2006).
[CrossRef]

Ind. Eng. Chem.

R. N. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. 28, 988–944 (1936).
[CrossRef]

J. Adhes. Sci. Technol.

E. Bittoun and A. Marmur, “Optimizing super-hydrophobic surfaces: criteria for comparison of surface topographies,” J. Adhes. Sci. Technol. 23, 401–411 (2009).
[CrossRef]

M. Flemming, L. Coriand, and A. Duparré, “Ultra-hydrophobicity through stochastic surface roughness,” J. Adhes. Sci. Technol. 23, 381–400 (2009).
[CrossRef]

J. Am. Ceram. Soc.

K. Tadanaga, N. Katata, and T. Minami, “Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol-gel method,” J. Am. Ceram. Soc. 80, 3213–3216 (2005).
[CrossRef]

J. Mater. Chem.

W. Y. Gan, S. W. Lam, and K. Chiang, “Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours,” J. Mater. Chem. 17, 952–954 (2007).
[CrossRef]

J. Phys. III

J. C. Brinker and A. J. Hurd, “Fundamentals of sol-gel dip-coating,” J. Phys. III 4, 1231–1242 (1994).
[CrossRef]

Langmuir

A. Marmur, “From hygrophilic to superhygrophobic: theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials,” Langmuir 24, 7573–7579(2008).
[CrossRef] [PubMed]

A. Marmur, “The lotus effect: superhydrophobicity and metastability,” Langmuir 20, 3517–3519 (2004).
[CrossRef]

F. C. Cebeci, Z. Wu, L. Zhai, R. E. Cohen, and M. F. Rubner, “Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings,” Langmuir 22, 2856–2862 (2006).
[CrossRef] [PubMed]

Proc. SPIE

M. Flemming, K. Roder, and A. Duparré, “Scanning force microscopy for optical surface metrology,” Proc. SPIE 5965, 59650A (1997).
[CrossRef]

M. Flemming, K. Reihs, and A. Duparré, “Characterization procedures for nanorough ultra-hydrophobic surfaces with controlled optical scatter,” Proc. SPIE 5188, 146–253 (2003).
[CrossRef]

Soft Matter

A. Marmur, “Soft contact: measurement and interpretation of contact angles,” Soft Matter 2, 12–17 (2006).
[CrossRef]

P. Roach, N. J. Shirtcliffe, and M. I. Newton, “Progess in superhydrophobic surface development,” Soft Matter 4, 224–240(2008).
[CrossRef]

Thin Solid Films

W. S. Law, S. W. Lam, W. Y. Gan, J. Scott, and R. Amal, “Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films,” Thin Solid Films 517, 5425–5430 (2009).
[CrossRef]

Trans. Faraday Soc.

A. B. D. Cassie and S. Baxter, “Wettability of porous surfaces,” Trans. Faraday Soc. 40, 546–551 (1944).
[CrossRef]

Other

R. E. Johnson, R. H. Dettre, and R. F. Gould, “1. Study of an idealized rough surface,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 112–135.
[CrossRef]

R. H. DettreR. E. Johnson, and R. F. Gould, “2. Contact angles measurements on rough surfaces,” in Contact Angle, Wettability and Adhesion (American Chemical Society, 1964), pp. 136–144.
[CrossRef]

E. Wolfram, R. Faust, and Wetting, Spreading and Adhesion, J.F.Padday, ed. (Academic, 1987), pp. 213–222.

J. Stover, Optical Scattering: Measurement and Analysis, 2nd ed., Press Monograph Vol. PM24SC (SPIE, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Superhydrophobic sol-gel coating: Θ aca = 150 ° ; (b) highly water-repellent sol-gel coating: bouncing test α bo = 20 ° .

Fig. 2
Fig. 2

(a) Hydrophilic sol-gel coating: Θ ap = 7 ° at t w = 2.5 s ; (b) hydrophilic sol-gel coating: fogging test; (c) glass substrate: fogging test.

Fig. 3
Fig. 3

Process chain for superhydrophobic surfaces.

Fig. 4
Fig. 4

AFM images (field of view 1 μm × 1 μm ): Al 2 O 3 sol-gel coatings [(a) sample #1, σ = 6.5 nm ; (b) sample #2, σ = 24 nm ; (c) sample #3, σ = 24 nm ] and (d) bare glass substrate ( σ = 0.2 nm ).

Fig. 5
Fig. 5

PSD functions of bare glass substrate and Al 2 O 3 sol-gel coatings.

Fig. 6
Fig. 6

Contact angles and slide-off/roll-off angles of Al 2 O 3 sol-gel coatings.

Fig. 7
Fig. 7

Self-cleaning effect on a glass surface with superhydrophobic coating (sample #3).

Fig. 8
Fig. 8

Bouncing test of Al 2 O 3 sol-gel coatings: (a) sample #1; (b) sample #2.

Fig. 9
Fig. 9

ARS measurements of bare glass substrate and Al 2 O 3 sol-gel coatings.

Fig. 10
Fig. 10

PSD functions of bare glass substrate and hydrophilic SiO 2 sol-gel coatings including AFM topography images (field of view: 1 μm × 1 μm ) of hydrophilic SiO 2 sol-gel coatings (sample #4, σ = 4.3 nm ; sample #5, σ = 38 nm ).

Fig. 11
Fig. 11

Fogging test: bank note viewed through a glass plate with (half-side) hydrophilic coating (left, uncoated; right, coated).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PSD ( f x , f y ) = lim L 1 L 2 | 0 L 0 L z ( x , y ) e j 2 π ( f x x + f y y ) d x d y | 2 .
PSD ( f ) = 1 2 π 0 2 π PSD ( f , θ ) d θ .

Metrics