Abstract

Antireflective coatings on sapphire were optimized by variation of the coating design, the total thickness, and the highly refractive material used. The coatings were characterized with a focus on their scratch resistance. An increased resistance against scratching wear is shown for hafnia-containing coatings with a total thickness of about 500nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).
  2. L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire,” Proc. SPIE 3705, 130–141 (1999).
    [CrossRef]
  3. S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
    [CrossRef]
  4. Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
    [CrossRef]
  5. A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
    [CrossRef]
  6. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Antireflection coating design for plastic optics,” Appl. Opt. 41, 3107–3110 (2002).
    [CrossRef] [PubMed]
  7. A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
    [CrossRef]
  8. T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
    [CrossRef]
  9. V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
    [CrossRef]
  10. U. Schulz, U. B. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003).
    [CrossRef] [PubMed]
  11. A. Thelen, “The pioneering contributions of W. Geffcken,” in Thin Films on Glass, H.Bach and D.Krause, eds. (Springer-Verlag, 1997), pp. 227–239.
  12. Test performed according to international standard IEC 68-2-70 (International Electrotechnical Commission, 1995).

2006 (2)

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

2005 (2)

Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
[CrossRef]

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

2003 (2)

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

U. Schulz, U. B. Schallenberg, and N. Kaiser, “Symmetrical periods in antireflective coatings for plastic optics,” Appl. Opt. 42, 1346–1351 (2003).
[CrossRef] [PubMed]

2002 (1)

1999 (1)

L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire,” Proc. SPIE 3705, 130–141 (1999).
[CrossRef]

1997 (1)

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

1995 (1)

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Babin, A. A.

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Chang, Y. Y.

Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
[CrossRef]

Chudoba, T.

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

Conde, A.

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

Cristóbal, A. B.

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

de Damborenea, J.

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

Du, H.

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

Fu, Y.

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

Götzelmann, R.

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Hagedorn, H.

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Housden, J.

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

Hung, C. Y.

Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
[CrossRef]

Johnson, L. F.

L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire,” Proc. SPIE 3705, 130–141 (1999).
[CrossRef]

Kaiser, N.

Karniychuk, M.

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

Klug, W.

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Konoplev, Yu. N.

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Linss, V.

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

Mamaev, Yu. A.

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Matl, K.

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Moran, M. B.

L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire,” Proc. SPIE 3705, 130–141 (1999).
[CrossRef]

Navas, C.

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

Richter, F.

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

Schallenberg, U. B.

Schulz, U.

Starostin, V. N.

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Sun, D.

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

Thelen, A.

A. Thelen, “The pioneering contributions of W. Geffcken,” in Thin Films on Glass, H.Bach and D.Krause, eds. (Springer-Verlag, 1997), pp. 227–239.

Turkin, A. A.

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Wang, D. Y.

Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
[CrossRef]

Zhang, S.

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

Zöller, A.

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Appl. Opt. (2)

Opt. Spectrosc. (1)

A. A. Babin, Yu. N. Konoplev, Yu. A. Mamaev, V. N. Starostin, and A. A. Turkin, “Antireflective coatings for intraocular lenses of sapphire and fianite,” Opt. Spectrosc. 79, 625–626 (1995).

Proc. SPIE (2)

L. F. Johnson and M. B. Moran, “Compressive coatings for strengthened sapphire,” Proc. SPIE 3705, 130–141 (1999).
[CrossRef]

A. Zöller, R. Götzelmann, K. Matl, W. Klug, and H. Hagedorn, “Plasma ion assisted deposition: a powerful technology for the production of optical coatings,” Proc. SPIE 3133, 196–204 (1997).
[CrossRef]

Surf. Coat. Technol. (4)

T. Chudoba, V. Linss, M. Karniychuk, and F. Richter, “Lateral force-displacement measurements—a new technique for the investigation of mechanical surface properties,” Surf. Coat. Technol. 200, 315–320 (2005).
[CrossRef]

S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review,” Surf. Coat. Technol. 167, 113–119 (2003).
[CrossRef]

Y. Y. Chang, D. Y. Wang, and C. Y. Hung, “Structural and mechanical properties of nanolayered TiAlN/CrN coatings synthesized by a cathodic arc deposition process,” Surf. Coat. Technol. 200, 1702–1708 (2005).
[CrossRef]

A. Conde, C. Navas, A. B. Cristóbal, J. Housden, and J. de Damborenea, “Characterisation of corrosion and wear behaviour of nanoscaled e-beam PVD CrN coatings,” Surf. Coat. Technol. 201, 2690–2695 (2006).
[CrossRef]

Thin Solid Films (1)

V. Linss, T. Chudoba, M. Karniychuk, and F. Richter, “Combination of normal and lateral force-displacement measurement as a new technique for the mechanical characterization of surfaces and coatings,” Thin Solid Films 494, 179–183 (2006).
[CrossRef]

Other (2)

A. Thelen, “The pioneering contributions of W. Geffcken,” in Thin Films on Glass, H.Bach and D.Krause, eds. (Springer-Verlag, 1997), pp. 227–239.

Test performed according to international standard IEC 68-2-70 (International Electrotechnical Commission, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic image of the AR coating design, with the sapphire substrate on the left. The dashed lines mark the three-layer periods.

Fig. 2
Fig. 2

Variation of the critical load for different AR coatings of comparable thickness but with different high-index materials.

Fig. 3
Fig. 3

Critical load versus total AR system thickness for hafnia-containing AR coatings.

Fig. 4
Fig. 4

Microscope images of scanning scratch tests performed on coatings with total thicknesses of 270 (left) and 969 nm (right).

Fig. 5
Fig. 5

Optical performance of a sapphire with 452 nm thick AR coatings on both surfaces.

Metrics