Abstract

An in situ monitoring setup and process control loop were developed and integrated into a magnetron sputtering coater equipped with a Sentech SE 401 single wavelength ellipsometer, including the engineering of software for in situ process control to enhance production accuracy. By using that software, the system allows direct monitoring of the layer thickness on a moving substrate. It is shown that it is possible to determine the complex index of refraction from the distribution of measurements depending on the layer thickness. A strategy has been developed for in situ reverse thickness engineering of the top layers to compensate measurement errors.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
    [CrossRef]
  2. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 5th ed. (North Holland, 1999).
  3. H. G. Tompkins, A User’s Guide to Ellipsometry (Dover, 2006).
  4. M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).
  5. M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.
  6. Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
    [CrossRef]
  7. K. Kopitzki, Einführung in die Festkörperphysik (Teubner, 1993).
  8. S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
    [CrossRef]
  9. B. Harbeke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170(1986).
    [CrossRef]
  10. D. E. Aspnes, “Precision bounds to ellipsometer systems,” Appl. Opt. 14, 1131–1136 (1975).
    [CrossRef] [PubMed]
  11. D. E. Aspnes, “Optimizing precision of rotating-analyzer and rotating-compensator ellipsometers,” J. Opt. Soc. Am. A 21, 403–410 (2004).
    [CrossRef]
  12. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).
  13. M. Yamamoto and T. Namioka, “In situ ellipsometric study of optical properties of ultrathin films,” Appl. Opt. 31, 1612–1621 (1992).
    [CrossRef] [PubMed]
  14. F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact Drude equation in reflection problems,” National Bureau of Standards, U.S., Misc. Publ. 256 (1964), pp. 61–84.

2009 (1)

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

2005 (1)

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

2004 (1)

2000 (1)

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

1992 (1)

1986 (1)

B. Harbeke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170(1986).
[CrossRef]

1975 (1)

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Aspnes, D. E.

Azzam, R. M. A.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 5th ed. (North Holland, 1999).

Bartolino, R.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Bartzsch, H.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Bashara, N. M.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 5th ed. (North Holland, 1999).

Buzea, C.

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Ciuchi, F.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Colson, J. P.

F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact Drude equation in reflection problems,” National Bureau of Standards, U.S., Misc. Publ. 256 (1964), pp. 61–84.

D’Elia, S.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Dittrich, R.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Frach, P.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Giesel, P.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Harbeke, B.

B. Harbeke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170(1986).
[CrossRef]

Kikuchi, K.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Kopitzki, K.

K. Kopitzki, Einführung in die Festkörperphysik (Teubner, 1993).

Kricheldorf, U.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Maruta, K.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Matsumoto, S.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Matusita, A.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

McCrackin, F. L.

F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact Drude equation in reflection problems,” National Bureau of Standards, U.S., Misc. Publ. 256 (1964), pp. 61–84.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Namioka, T.

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

Pflug, A.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Richter, U.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Rickers, C.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Rickers, Ch.

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Robbie, K.

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Saisho, S.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Sakurai, T.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Scaramuzza, N.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Schiffmann, K.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

Song, Y.

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Strangi, G.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins, A User’s Guide to Ellipsometry (Dover, 2006).

Vergoehl, M.

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Versace, C.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Yamamoto, M.

Appl. Opt. (2)

Appl. Phys. B (1)

B. Harbeke, “Coherent and incoherent reflection and transmission of multilayer structures,” Appl. Phys. B 39, 165–170(1986).
[CrossRef]

Appl. Surf. Sci. (1)

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci. 255, 7203–7211 (2009).
[CrossRef]

Comput. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comput. J. 7, 308–313 (1965).

J. Opt. Soc. Am. A (1)

Rep. Prog. Phys. (1)

C. Buzea and K. Robbie, “State of the art in thin film thickness and deposition rate monitoring sensors,” Rep. Prog. Phys. 68, 385–409 (2005).
[CrossRef]

Vacuum (1)

Y. Song, T. Sakurai, K. Maruta, A. Matusita, S. Matsumoto, S. Saisho, and K. Kikuchi, “Optical and structural properties of dense SiO2, Ta2O5 and Nb2O5 thin films deposited by indirectly reactive sputtering technique,” Vacuum 59, 755–763(2000).
[CrossRef]

Other (6)

K. Kopitzki, Einführung in die Festkörperphysik (Teubner, 1993).

F. L. McCrackin and J. P. Colson, “Computational techniques for the use of the exact Drude equation in reflection problems,” National Bureau of Standards, U.S., Misc. Publ. 256 (1964), pp. 61–84.

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 5th ed. (North Holland, 1999).

H. G. Tompkins, A User’s Guide to Ellipsometry (Dover, 2006).

M. Vergoehl, C. Rickers, U. Kricheldorf, K. Schiffmann, P. Giesel, R. Dittrich, and U. Richter, “Deposition of multilayer optical films and rugate filters deposited by reactive magnetron sputtering,” in 49th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2006).

M. Vergoehl, P. Frach, H. Bartzsch, A. Pflug, and Ch. Rickers, “Process technology, applications and potentials of magnetron sputtering technology for optical coatings,” in Optical Interference Coatings (Optical Society of America, 2007), paper MA3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Allocation of measurements to theoretical calculations.

Fig. 2
Fig. 2

Distribution of Δ depending on elapsed coating time.

Fig. 3
Fig. 3

Distribution of Ψ depending on elapsed coating time.

Fig. 4
Fig. 4

Theory versus time-controlled and ellipsometer-controlled deposition.

Fig. 5
Fig. 5

Distribution of the smallest mean square values in the two layer parameter space. One global minimum can be observed, as well as some local minima close by.

Fig. 6
Fig. 6

Distribution of the smallest mean square values in the three layer parameter space. The smaller a bubble, the smaller the error at that point in space.

Fig. 7
Fig. 7

Percentage of measurements proven valid by the software.

Fig. 8
Fig. 8

Calculated distribution of Δ depending on the refractive index over layer thickness on a glass sample. Absorption is set to zero.

Fig. 9
Fig. 9

Calculated distribution of Ψ depending on the refractive index over layer thickness on a glass sample. Absorption is set to zero.

Fig. 10
Fig. 10

Result of a 23 layered cavity filter.

Tables (1)

Tables Icon

Table 1 Ex Situ versus In Situ Determinations of the Complex Index of Refraction at 632.8 nm

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ρ = tan Ψ e i Δ .
ϵ ( ν ) = ϵ + k = 1 m Ω p , k 2 Ω 0 , k 2 ν 2 i Ω τ , k ν ω p 2 ν 2 + i ω τ ν ,
I ( t ) = I 0 [ 1 + α cos 2 A ( t ) + β sin 2 A ( t ) ] ,
A ( t ) = 2 π f t + A c ,
tan Ψ = tan P 1 + α 1 α ,
cos Δ = ± β ( 1 α 2 ) .
| δ ρ | rms = 2 β 2 1 β 2 tan Ψ | δ α | rms ,

Metrics