Abstract

Recently, the demand for durability of optical thin films, which have long been used, has been growing as the performance of optical components improves. The stress of a film is an important parameter that is related to its adhesion. The electron beam (EB) and ion-assisted deposition (IAD) methods are widely used to fabricate optical thin films. However, there are few reports on long-term internal stress, despite the importance of this issue. Here we discuss the time dependence of the stress of SiO2 optical thin films in terms of optical characteristics in the infrared region. It was found that SiO2 thin films prepared by the EB and IAD methods exhibited compression stress. The Si–OH molecular bond was observed at around 930cm1 in the Fourier transform infrared spectroscopy spectrum of the sample prepared by the EB method, which exhibited a large change in internal stress after an elapsed time. It is considered that this change in bonding was related to the decrease in the stress of the films.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Aoki, “Optical coatings and their starting materials,” Rev. Laser Eng. 24, 61–73 (1996).
    [CrossRef]
  2. S. Mohan and G. M. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46, 645–659 (1995).
    [CrossRef]
  3. K. Arai, “Time dependence of internal stress and optical characteristics of SiO2 optical thin film,” Proc. SPIE 6469, 646905 (2007).
    [CrossRef]
  4. T. Nishikawa, “Time dependence of internal stress and molecule structure with long-term in SiO2 optical thin film,” in Proceedings of the Sixth International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO6) (Japan Society for the Promotion of Science, 2009), pp. 239–242.
  5. Y. J. Robic and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290/291, 34–39 (1996).
    [CrossRef]
  6. C. C. Lee, C. L. Tien, and J. C. Hsu, “Internal stress and optical properties of Nb2O5 thin films deposited by ion-beam sputtering,” Appl. Opt. 41, 2043–2047 (2002).
    [CrossRef] [PubMed]
  7. H. C. Liu and S. P. Murarka, “Elastic and viscoelastic analysis of stress in thin films,” J. Appl. Phys 72, 3458–3468 (1992).
    [CrossRef]
  8. H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
    [CrossRef]
  9. W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
    [CrossRef]
  10. K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO2 layers. long-term evolution,” Appl. Opt. 35, 5067–5072 (1996).
    [CrossRef] [PubMed]
  11. I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
    [CrossRef]
  12. A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
    [CrossRef]
  13. S. Y. Lin, “Vibrational local modes of a-SiO2:H and variation of local modes in different local environments,” J. Appl. Phys 82, 5976–5982 (1997).
    [CrossRef]
  14. J. K. West and L. L. Hench, “Molecular orbital models of silica rings and their vibrational spectra,” Phys. Chem. Glasses 39, 301–304 (1998).
  15. R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
    [CrossRef]
  16. F. L. Galeener, “Planar rings in glasses,” Thin Solid Films 44, 1037–1040 (1982).
  17. K. Awazu, “Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser,” J. Non-Cryst. Solid. 337, 241–253 (2004).
    [CrossRef]
  18. K. Awazu, “Small rings in amorphous silica,” J. Appl. Phys. 74, 917–923 (2005).
  19. A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
    [CrossRef]
  20. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)
  21. K. Nomura, and H. Ogawa, “Sputtering under ultraviolet light irradiation,” J. Appl. Phys 71, 1469–1474 (1992).
    [CrossRef]
  22. L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
    [CrossRef]
  23. S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
    [CrossRef]
  24. K. Nomura and H. Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation,” J. Appl. Phys. 71, 1469–1474 (1992).
    [CrossRef]

2007

K. Arai, “Time dependence of internal stress and optical characteristics of SiO2 optical thin film,” Proc. SPIE 6469, 646905 (2007).
[CrossRef]

2005

K. Awazu, “Small rings in amorphous silica,” J. Appl. Phys. 74, 917–923 (2005).

2004

K. Awazu, “Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser,” J. Non-Cryst. Solid. 337, 241–253 (2004).
[CrossRef]

2002

1998

J. K. West and L. L. Hench, “Molecular orbital models of silica rings and their vibrational spectra,” Phys. Chem. Glasses 39, 301–304 (1998).

1997

S. Y. Lin, “Vibrational local modes of a-SiO2:H and variation of local modes in different local environments,” J. Appl. Phys 82, 5976–5982 (1997).
[CrossRef]

1996

K. Scherer, L. Nouvelot, P. Lacan, and R. Bosmans, “Optical and mechanical characterization of evaporated SiO2 layers. long-term evolution,” Appl. Opt. 35, 5067–5072 (1996).
[CrossRef] [PubMed]

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
[CrossRef]

Y. J. Robic and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290/291, 34–39 (1996).
[CrossRef]

T. Aoki, “Optical coatings and their starting materials,” Rev. Laser Eng. 24, 61–73 (1996).
[CrossRef]

1995

S. Mohan and G. M. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46, 645–659 (1995).
[CrossRef]

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

1993

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

1992

K. Nomura and H. Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation,” J. Appl. Phys. 71, 1469–1474 (1992).
[CrossRef]

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

K. Nomura, and H. Ogawa, “Sputtering under ultraviolet light irradiation,” J. Appl. Phys 71, 1469–1474 (1992).
[CrossRef]

H. C. Liu and S. P. Murarka, “Elastic and viscoelastic analysis of stress in thin films,” J. Appl. Phys 72, 3458–3468 (1992).
[CrossRef]

1989

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

1988

S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
[CrossRef]

1982

F. L. Galeener, “Planar rings in glasses,” Thin Solid Films 44, 1037–1040 (1982).

1977

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

Abeles, B.

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

Agarwal, A.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Anandan, M.

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

Aoki, T.

T. Aoki, “Optical coatings and their starting materials,” Rev. Laser Eng. 24, 61–73 (1996).
[CrossRef]

Arai, K.

K. Arai, “Time dependence of internal stress and optical characteristics of SiO2 optical thin film,” Proc. SPIE 6469, 646905 (2007).
[CrossRef]

Ashokan, R.

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

Awazu, K.

K. Awazu, “Small rings in amorphous silica,” J. Appl. Phys. 74, 917–923 (2005).

K. Awazu, “Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser,” J. Non-Cryst. Solid. 337, 241–253 (2004).
[CrossRef]

Bomben, K. D.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)

Bosmans, R.

Buhrman, R. A.

S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
[CrossRef]

Davis, K. M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Eberhardt, W.

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

Galeener, F. L.

F. L. Galeener, “Planar rings in glasses,” Thin Solid Films 44, 1037–1040 (1982).

Gopal, V.

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

Hailen, H. D.

S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
[CrossRef]

Hench, L. L.

J. K. West and L. L. Hench, “Molecular orbital models of silica rings and their vibrational spectra,” Phys. Chem. Glasses 39, 301–304 (1998).

Hsu, J. C.

Krishna, G. M.

S. Mohan and G. M. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46, 645–659 (1995).
[CrossRef]

Lacan, P.

Lee, C. C.

Leplan, H.

H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
[CrossRef]

Lin, S. Y.

S. Y. Lin, “Vibrational local modes of a-SiO2:H and variation of local modes in different local environments,” J. Appl. Phys 82, 5976–5982 (1997).
[CrossRef]

Lisoviskii, I. P.

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

Litovchenko, V. G.

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

Liu, H. C.

H. C. Liu and S. P. Murarka, “Elastic and viscoelastic analysis of stress in thin films,” J. Appl. Phys 72, 3458–3468 (1992).
[CrossRef]

Lozinskii, V. G.

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

Matsuno, N.

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

Mizutani, T.

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

Mohan, S.

S. Mohan and G. M. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46, 645–659 (1995).
[CrossRef]

Moulder, J. F.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)

Murarka, S. P.

H. C. Liu and S. P. Murarka, “Elastic and viscoelastic analysis of stress in thin films,” J. Appl. Phys 72, 3458–3468 (1992).
[CrossRef]

Nelson, S. A.

S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
[CrossRef]

Nishikawa, T.

T. Nishikawa, “Time dependence of internal stress and molecule structure with long-term in SiO2 optical thin film,” in Proceedings of the Sixth International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO6) (Japan Society for the Promotion of Science, 2009), pp. 239–242.

Nomura, K.

K. Nomura and H. Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation,” J. Appl. Phys. 71, 1469–1474 (1992).
[CrossRef]

K. Nomura, and H. Ogawa, “Sputtering under ultraviolet light irradiation,” J. Appl. Phys 71, 1469–1474 (1992).
[CrossRef]

Nouvelot, L.

Ogawa, H.

K. Nomura and H. Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation,” J. Appl. Phys. 71, 1469–1474 (1992).
[CrossRef]

K. Nomura, and H. Ogawa, “Sputtering under ultraviolet light irradiation,” J. Appl. Phys 71, 1469–1474 (1992).
[CrossRef]

Pauleau, Y.

H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
[CrossRef]

Pliskin, W. A.

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

Rafin, B.

Y. J. Robic and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290/291, 34–39 (1996).
[CrossRef]

Robic, J. Y.

H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
[CrossRef]

Robic, Y. J.

Y. J. Robic and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290/291, 34–39 (1996).
[CrossRef]

Scherer, K.

Singh, R.

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

Sobol, P. E.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)

Stasiewski, H.

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

Steblovskii, G. I.

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

Stickle, W. F.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)

Suzuoki, Y.

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

Tabata, A.

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

Tien, C. L.

Tomozawa, M.

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

West, J. K.

J. K. West and L. L. Hench, “Molecular orbital models of silica rings and their vibrational spectra,” Phys. Chem. Glasses 39, 301–304 (1998).

Yang, L.

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

Appl. Opt.

J. Appl. Phys

K. Nomura, and H. Ogawa, “Sputtering under ultraviolet light irradiation,” J. Appl. Phys 71, 1469–1474 (1992).
[CrossRef]

H. C. Liu and S. P. Murarka, “Elastic and viscoelastic analysis of stress in thin films,” J. Appl. Phys 72, 3458–3468 (1992).
[CrossRef]

H. Leplan, J. Y. Robic, and Y. Pauleau, “Kinetics of residual stress evolution in evaporated silicon dioxide films exposed to room air,” J. Appl. Phys 79, 6926–6931 (1996).
[CrossRef]

S. Y. Lin, “Vibrational local modes of a-SiO2:H and variation of local modes in different local environments,” J. Appl. Phys 82, 5976–5982 (1997).
[CrossRef]

J. Appl. Phys.

R. Ashokan, R. Singh, V. Gopal, and M. Anandan, “Structural characterization of photochemically grown silicon dioxide films by ellipsometry and infrared studies,” J. Appl. Phys. 73, 3943–3950 (1993).
[CrossRef]

K. Awazu, “Small rings in amorphous silica,” J. Appl. Phys. 74, 917–923 (2005).

S. A. Nelson, H. D. Hailen, and R. A. Buhrman, “A structural and electrical comparison of thin films grown on silicon by plasma anodization and rapid thermal processing to furnace oxidation,” J. Appl. Phys. 63, 5027–5035(1988).
[CrossRef]

K. Nomura and H. Ogawa, “SiO2 thin films deposited by reactive ion-beam sputtering under ultraviolet light irradiation,” J. Appl. Phys. 71, 1469–1474 (1992).
[CrossRef]

J. Non-Cryst. Solid.

K. Awazu, “Ablation and compaction of amorphous SiO2 irradiated with ArF excimer laser,” J. Non-Cryst. Solid. 337, 241–253 (2004).
[CrossRef]

J. Non-Cryst. Solids

A. Agarwal, K. M. Davis, and M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

J. Vac. Sci. Technol.

W. A. Pliskin, “Comparison of properties of dielectric films deposited by various methods,” J. Vac. Sci. Technol. 14, 1064–1081 (1977).
[CrossRef]

Phys. Chem. Glasses

J. K. West and L. L. Hench, “Molecular orbital models of silica rings and their vibrational spectra,” Phys. Chem. Glasses 39, 301–304 (1998).

Phys. Rev. B

L. Yang, B. Abeles, W. Eberhardt, and H. Stasiewski, “Photoemission spectroscopy of heterojunctions of hydrogenated amorphous silicon with silicon oxide and nitride,” Phys. Rev. B 39, 3801–3816 (1989).
[CrossRef]

Proc. SPIE

K. Arai, “Time dependence of internal stress and optical characteristics of SiO2 optical thin film,” Proc. SPIE 6469, 646905 (2007).
[CrossRef]

Rev. Laser Eng.

T. Aoki, “Optical coatings and their starting materials,” Rev. Laser Eng. 24, 61–73 (1996).
[CrossRef]

Thin Solid Films

I. P. Lisoviskii, V. G. Litovchenko, V. G. Lozinskii, and G. I. Steblovskii, “IR spectroscopic investigation of SiO2 film structure,” Thin Solid Films 213, 164–169 (1992).
[CrossRef]

Y. J. Robic and B. Rafin, “Residual stress in silicon dioxide thin films produced by ion-assisted deposition,” Thin Solid Films 290/291, 34–39 (1996).
[CrossRef]

A. Tabata, N. Matsuno, Y. Suzuoki, and T. Mizutani, “Optical properties and structure of SiO2 films prepared by ion-beam sputtering,” Thin Solid Films 289, 84–89 (1996).
[CrossRef]

F. L. Galeener, “Planar rings in glasses,” Thin Solid Films 44, 1037–1040 (1982).

Vacuum

S. Mohan and G. M. Krishna, “A review of ion beam assisted deposition of optical thin films,” Vacuum 46, 645–659 (1995).
[CrossRef]

Other

T. Nishikawa, “Time dependence of internal stress and molecule structure with long-term in SiO2 optical thin film,” in Proceedings of the Sixth International Symposium on Transparent Oxide Thin Films for Electronics and Optics (TOEO6) (Japan Society for the Promotion of Science, 2009), pp. 239–242.

J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, 1995)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Parameters for calculation of internal stress.

Fig. 2
Fig. 2

Internal stress of films prepared under various deposition conditions.

Fig. 3
Fig. 3

Transmittance spectra: (1) EB method and (b) IAD method from 1000 V to 800 mA.

Fig. 4
Fig. 4

Infrared reflection spectra ( 12 h later).

Fig. 5
Fig. 5

Effect of humidity on an EB-evaporated SiO 2 film deposited on a 400 ° C substrate: (a) initial spectrum, (b) 24-day exposure at 85 ° C , 85% RH, and (c) densified 10 min in N2 at 983 ° C [9].

Fig. 6
Fig. 6

Infrared reflection spectra (EB method).

Fig. 7
Fig. 7

Infrared reflection peaks for each ring structure and Si–OH (EB method).

Fig. 8
Fig. 8

Change in number of N-membered rings: (a) EB method (sample with a large change in internal stress and (b) IAD method from 1000 V to 800 mA (sample with a small change in internal stress).

Fig. 9
Fig. 9

SEM images of thin films: (a) schematic view of the SEM observation angle, (b) EB method, and (c) IAD method from 1000 V to 800 mA.

Fig. 10
Fig. 10

X-ray diffraction spectra.

Fig. 11
Fig. 11

Changes in binding energy and FWHM: (a) peak position of Si–2p, (b) FWHM of Si–2p, (c) peak position of O–1 s, and (d) FWHM of O–1 s.

Tables (3)

Tables Icon

Table 1 Parameters of the Ion Gun for the IAD Method

Tables Icon

Table 2 Bonds of Silicon Molecule a

Tables Icon

Table 3 Differing FWHM Peaks for Each Condition

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = δ E s d s 2 r 2 3 ( 1 ν ) d F ,

Metrics