Abstract

Thin films of high reflecting metal, such as Ag, have a high reflectance in the long-wavelength region. When they are combined with dielectric layers, it is possible, through thin film interference effects, to induce transmission in certain shorter wavelength regions. Thus, they are useful components for the design of long-wavelength cutoff filters with a broad rejection region. In this paper, metal/dielectric multilayer designs based on this principle are numerically investigated. Three designs with different cutoff wavelengths and with very broad transmission regions in the visible or near-IR spectral ranges are presented. An excellent rejection on the long-wavelength side extends beyond 20μm. Experimental results for one of the designs produced in our magnetron sputtering system are given.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription