Abstract

Plasma-assisted electron-beam evaporation leads to changes in the crystallinity, density, and stresses of thin films. A dual-source plasma system provides stress control of large-aperture, high-fluence coatings used in vacuum for substrates 1m in aperture.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).
  2. E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.
  3. Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
    [CrossRef]
  4. H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
    [CrossRef]
  5. D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
    [CrossRef]
  6. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
    [CrossRef]
  7. R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
    [CrossRef]
  8. F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
    [CrossRef]
  9. H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004).
    [CrossRef]
  10. M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
    [CrossRef]
  11. E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980).
    [CrossRef]
  12. B. G. Bovard, “Ion-assisted deposition,” in Thin Films for Optical Systems, F.R.Flory ed. (Marcel Dekker, 1995), pp. 117–132.
  13. J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).
  14. D. E. Morton and V. Fridman, “Measurement and correlation of ion beam current density to moisture stability of oxide film stacks fabricated by cold cathode ion assisted deposition,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2003), pp. 297–302 (paper 53).
  15. K.-H. Müller, “Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986).
    [CrossRef]
  16. J. D. Targove and H. A. Macleod, “Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition,” Appl. Opt. 27, 3779–3781 (1988).
    [CrossRef]
  17. G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
    [CrossRef]
  18. H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
    [CrossRef]
  19. J. V. Sanders, “Structure of evaporated metal films,” in Chemisorption and Reactions on Metallic Films, J.R.Anderson ed., Physical Chemistry, a Series of Monographs (Academic, 1971), pp. 1–38.
  20. J. A. Thorton, “Structure-zone models of thin films,” Proc. SPIE 821, 95–103 (1988).
  21. B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).
  22. G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).
  23. J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105(2006).
    [CrossRef]
  24. H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
    [CrossRef]
  25. D. Gibson, European patent EP 1 154 459 A2 (14 November 2001).
  26. S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
    [CrossRef]
  27. S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997).
    [CrossRef]
  28. J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.
  29. B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).
  30. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
    [CrossRef]
  31. B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, 1978).

2008

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

2006

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105(2006).
[CrossRef]

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

2005

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

2004

H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004).
[CrossRef]

2002

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

2000

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

1999

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

1998

M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
[CrossRef]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

1997

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997).
[CrossRef]

1995

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

1993

Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
[CrossRef]

1988

1987

H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
[CrossRef]

1986

K.-H. Müller, “Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986).
[CrossRef]

1980

E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

1969

B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

1909

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).

Alvisi, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Andre, B.

B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).

Anzellotti, J. F.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

Atanassov, G.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Bovard, B. G.

B. G. Bovard, “Ion-assisted deposition,” in Thin Films for Optical Systems, F.R.Flory ed. (Marcel Dekker, 1995), pp. 117–132.

Carbone, F. A.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

Chuang, Y.-H.

Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
[CrossRef]

Collier, D. R.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

Crossan, E.

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

Cullity, B. D.

B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, 1978).

Dai, Y. S.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Demchishin, A. V.

B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

Di Giulio, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Dijon, J.

B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).

Duchesne, J.

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

Fridman, V.

D. E. Morton and V. Fridman, “Measurement and correlation of ion beam current density to moisture stability of oxide film stacks fabricated by cold cathode ion assisted deposition,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2003), pp. 297–302 (paper 53).

Fu, J. K.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Gatto, A.

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Geenen, B.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Gibson, D.

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

D. Gibson, European patent EP 1 154 459 A2 (14 November 2001).

Harper, J. M.

H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004).
[CrossRef]

Herber, J.

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Hirsch, E. H.

E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

Houbre, F.

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

Howe, J.

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

Howe, J. D.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Jitsuno, T.

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

Kahn, J. R.

J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).

Kaiser, N.

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Kaufman, H. R.

H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004).
[CrossRef]

H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
[CrossRef]

J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).

Keck, J.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Kennedy, M.

M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
[CrossRef]

Kersten, H.

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

Kosc, T. Z.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Kozlov, A.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Lambropoulos, J. C.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

Lavastre, E.

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

Leplan, H.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

Macleod, H. A.

Marrone, S. G.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

McCullough, M.

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

Meyerhofer, D. D.

Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
[CrossRef]

Mikami, T.

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

Morton, D. E.

D. E. Morton and V. Fridman, “Measurement and correlation of ion beam current density to moisture stability of oxide film stacks fabricated by cold cathode ion assisted deposition,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2003), pp. 297–302 (paper 53).

Movchan, B. A.

B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

Müller, K.-H.

K.-H. Müller, “Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986).
[CrossRef]

Néauport, J.

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

Niederwald, H. S.

M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
[CrossRef]

Oliver, J. B.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

J. B. Oliver and D. Talbot, “Optimization of deposition uniformity for large-aperture National Ignition Facility substrates in a planetary rotation system,” Appl. Opt. 45, 3097–3105(2006).
[CrossRef]

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

Papernov, S.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997).
[CrossRef]

Pauleau, Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Perrone, M. R.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Placido, F.

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

Protopapa, M. L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Rafin, B.

B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).

Rigatti, A.

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

Rigatti, A. L.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Ristau, D.

M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
[CrossRef]

Robic, J. Y.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

Robinson, R. S.

H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
[CrossRef]

Sanders, J. V.

J. V. Sanders, “Structure of evaporated metal films,” in Chemisorption and Reactions on Metallic Films, J.R.Anderson ed., Physical Chemistry, a Series of Monographs (Academic, 1971), pp. 1–38.

Schmid, A. W.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997).
[CrossRef]

Seddon, R. I.

H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
[CrossRef]

Smith, C.

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

Smith, D. J.

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

Steffen, H.

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

Stolz, C.

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

Stoney, G. G.

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).

Szczepanski, J.

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

Talbot, D.

Targove, J. D.

Thielsch, R.

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

Thorton, J. A.

J. A. Thorton, “Structure-zone models of thin films,” Proc. SPIE 821, 95–103 (1988).

Turlo, J.

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Valentini, A.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Varga, I. K.

E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

Vasanelli, L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

Vender, D.

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

Waddell, E.

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

Wagner, H. E.

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

Zaksas, D.

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

Zheng, L.

Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
[CrossRef]

Zhurin, V. V.

J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).

Appl. Opt.

Fiz. Met. Metalloved.

B. A. Movchan and A. V. Demchishin, “Structure and properties of thick vacuum-condensates of nickel, titanium, tungsten, aluminum oxide, and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

IEEE J. Quantum Electron.

Y.-H. Chuang, L. Zheng, and D. D. Meyerhofer, “Propagation of light pulses in a chirped-pulse-amplification laser,” IEEE J. Quantum Electron. 29, 270–280 (1993).
[CrossRef]

J. Appl. Phys.

H. Leplan, B. Geenen, J. Y. Robic, and Y. Pauleau, “Residual stresses in evaporated silicon dioxide thin films: Correlation with deposition parameters and aging behavior,” J. Appl. Phys. 78, 962–968 (1995).
[CrossRef]

S. Papernov and A. W. Schmid, “Localized absorption effects during 351nm, pulsed laser irradiation of dielectric multilayer thin films,” J. Appl. Phys. 82, 5422–5432(1997).
[CrossRef]

J. Vac. Sci. Technol. A

H. R. Kaufman, R. S. Robinson, and R. I. Seddon, “End-Hall ion source,” J. Vac. Sci. Technol. A 5, 2081–2084 (1987).
[CrossRef]

K.-H. Müller, “Monte Carlo calculation for structural modifications in ion-assisted thin film deposition due to thermal spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986).
[CrossRef]

Proc. R. Soc. London Ser. A

G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proc. R. Soc. London Ser. A 82, 172–175 (1909).

Proc. SPIE

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

S. Papernov, D. Zaksas, J. F. Anzellotti, D. J. Smith, A. W. Schmid, D. R. Collier, and F. A. Carbone, “One step closer to the intrinsic laser-damage threshold of HfO2 and SiO2 monolayer thin films,” Proc. SPIE 3244, 434–445 (1998).
[CrossRef]

J. A. Thorton, “Structure-zone models of thin films,” Proc. SPIE 821, 95–103 (1988).

J. B. Oliver, A. L. Rigatti, J. D. Howe, J. Keck, J. Szczepanski, A. W. Schmid, S. Papernov, A. Kozlov, and T. Z. Kosc, “Thin-film polarizers for the OMEGA EP Laser System,” Proc. SPIE 5991, 394–401 (2005).

D. J. Smith, M. McCullough, C. Smith, T. Mikami, and T. Jitsuno, “Low stress ion-assisted coatings on fused silica substrates for large aperture laser pulse compression gratings,” Proc. SPIE 7132, 71320E (2008).
[CrossRef]

F. Placido, D. Gibson, E. Waddell, and E. Crossan, “Characterisation of optical thin films obtained by plasma ion assisted deposition,” Proc. SPIE 6286, 628602 (2006).
[CrossRef]

H. R. Kaufman and J. M. Harper, “Ion-assist applications of broad-beam ion sources,” Proc. SPIE 5527, 50–68 (2004).
[CrossRef]

Thin Solid Films

M. Kennedy, D. Ristau, and H. S. Niederwald, “Ion beam-assisted deposition of MgF2 and YbF3 films,” Thin Solid Films 333, 191–195 (1998).
[CrossRef]

E. H. Hirsch and I. K. Varga, “Thin film annealing by ion bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258 (2000).
[CrossRef]

R. Thielsch, A. Gatto, J. Herber, and N. Kaiser, “A comparative study of the UV optical and structural properties of SiO2, Al2O3, and HfO2 single layers deposited by reactive evaporation, ion-assisted deposition and plasma ion-assisted deposition,” Thin Solid Films 410, 86–93 (2002).
[CrossRef]

G. Atanassov, J. Turlo, J. K. Fu, and Y. S. Dai, “Mechanical, optical and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Vacuum

H. Kersten, H. Steffen, D. Vender, and H. E. Wagner, “On the ion energy transfer to the substrate during titanium deposition in a hallow cathode arc discharge,” Vacuum 46, 305–308 (1995).
[CrossRef]

Other

J. V. Sanders, “Structure of evaporated metal films,” in Chemisorption and Reactions on Metallic Films, J.R.Anderson ed., Physical Chemistry, a Series of Monographs (Academic, 1971), pp. 1–38.

E. Lavastre, J. Néauport, J. Duchesne, H. Leplan, and F. Houbre, “Polarizers coatings for the Laser MegaJoule prototype,” in Optical Interference Coatings, OSA Technical Digest(Optical Society of America, 2004), paper TuF3.

B. G. Bovard, “Ion-assisted deposition,” in Thin Films for Optical Systems, F.R.Flory ed. (Marcel Dekker, 1995), pp. 117–132.

J. R. Kahn, H. R. Kaufman, and V. V. Zhurin, “Substrate heating using several configurations of an end-hall ion source,” in 46th Annual Technical Conference Proceedings (Society of Vacuum Coaters, 2003), pp. 621–625 (paper 110).

D. E. Morton and V. Fridman, “Measurement and correlation of ion beam current density to moisture stability of oxide film stacks fabricated by cold cathode ion assisted deposition,” in Proceedings of the 41st Annual Technical Conference of the Society of Vacuum Coaters (Society of Vacuum Coaters, 2003), pp. 297–302 (paper 53).

B. D. Cullity, Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, 1978).

J. B. Oliver, J. Howe, A. Rigatti, D. J. Smith, and C. Stolz, “High precision coating technology for large aperture NIF optics,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2001), paper ThD2.

B. Andre, J. Dijon, and B. Rafin, “Thin hafnium oxide and method for depositing same,” U.S. patent 7,037,595 (2 May 2006).

D. Gibson, European patent EP 1 154 459 A2 (14 November 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

1.4 m coating chamber with planetary rotation, dual electron-beam guns, and a single Satis PDS plasma source. The plasma source is positioned off-center in the chamber to provide a more-uniform plasma flux over the substrate aperture.

Fig. 2
Fig. 2

Thin Film Solutions Ltd. dual plasma-source system installed in the Laboratory for Laser Energetic’s 1.8 m electron-beam evaporation system. The plasma sources provide a high ion flux over the entire surface of the meter-scale substrates.

Fig. 3
Fig. 3

Influence of O 2 backfill pressure on the resulting sensitivity of hafnia films to relative humidity. A larger spectral shift between 0% and 40% relative humidity indicates greater film porosity.

Fig. 4
Fig. 4

Laser-damage thresholds of hafnia deposited with PIAD exhibit minimal deposition-rate dependence, unlike typical electron-beam deposition of hafnia. The control electron-beam coating was deposited with an oxygen backfill pressure of 2 × 10 4 Torr .

Fig. 5
Fig. 5

XRD measurements of hafnia monolayers indicate increasing crystallinity as the plasma/evaporant flux is increased. This may be achieved by increasing the plasma current or decreasing the deposition rate.

Fig. 6
Fig. 6

(a) Influence of plasma-assist voltage on the stresses in hafnia monolayers. An assist of approximately 145 V at 35 A is sufficient to transition from tensile to compressive stress. (b) Influence of plasma-assist voltage on the stresses in silica monolayers. Note that all silica stresses are compressive, except the evaporated silica (no PIAD) in a dry environment.

Fig. 7
Fig. 7

Change in film stress for PIAD and electron-beam-deposited coatings as the ambient relative humidity changes from 40% to 0% relative humidity (RH). While the percent relative humidity of the measurement environment changes almost immediately, the removal of water from the film pores is a much slower process, dependent on the diffusion of water through the film structure. Note that PIAD coatings are more compressive, with a smaller change in film stress as the coating is dried.

Fig. 8
Fig. 8

Change in film stress for PIAD and electron-beam-deposited coatings at 0% relative humidity as a function of aging. While electron-beam-deposited coatings continue to change significantly over periods of months, partially dense PIAD coatings with near-neutral stress maintain a consistent film stress.

Fig. 9
Fig. 9

Use of the dual-source PIAD system in the 1.8 m coating chamber for the deposition of the SPHR10 coating. The plasma effectively fills the entire deposition region, providing a uniform densification of the film over the full aperture of the substrate.

Fig. 10
Fig. 10

Stress-aging measurements of PIAD coatings indicate negligible changes in stress as a function of time after deposition. In comparison, the stress of the electron-beam- deposited coating in Fig. 8 continues to change significantly six months after deposition.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ = E s t s 2 6 ( 1 ν s ) t f R ,

Metrics