Abstract

ZrO2SiO2 and Nb2O5SiO2 mixture coatings as well as those of pure zirconia (ZrO2), niobia (Nb2O5), and silica (SiO2) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia– silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO2. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia– and niobia–silica mixtures.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
    [CrossRef]
  2. J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
    [CrossRef]
  3. V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006).
    [CrossRef] [PubMed]
  4. M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.
  5. D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
    [CrossRef]
  6. S. Chao, W.-H. Wang, and C.-C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40, 2177–2182 (2001).
    [CrossRef]
  7. B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800–2805 (1989).
    [CrossRef] [PubMed]
  8. M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006).
    [CrossRef] [PubMed]
  9. D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
    [CrossRef]
  10. C.-C. Lee, C.-J. Tang, and J.-Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333–1337 (2006).
    [CrossRef] [PubMed]
  11. C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, “Residual stress in Ta2O5–SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47, C167–C171 (2008).
    [CrossRef] [PubMed]
  12. H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
    [CrossRef]
  13. D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
    [CrossRef]
  14. H. Sankur, W. J. Gunning, and J. F. DeNatale, “Intrinsic stress and structural properties of mixed composition thin films,” Appl. Opt. 27, 1564–1567 (1988).
    [CrossRef] [PubMed]
  15. N. K. Sahoo and A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
    [CrossRef]
  16. S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
    [CrossRef]
  17. M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996).
    [CrossRef]
  18. V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
    [CrossRef]
  19. D. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
    [CrossRef]
  20. A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
    [CrossRef]
  21. N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006).
    [CrossRef]
  22. D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003).
    [CrossRef]
  23. J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008).
    [CrossRef]
  24. J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
    [CrossRef]
  25. D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
    [CrossRef] [PubMed]
  26. URL: http://www.optilayer.com.
  27. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).
  28. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–664 (1935).
    [CrossRef]
  29. A. H. A. Lorentz, “Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der koerperdichte,” Ann. Phys. 245, 641–665 (1880).
    [CrossRef]
  30. L. Lorenz, “Ueber die refractionsconstante,” Ann. Phys. 247, 70–103 (1880).
    [CrossRef]
  31. C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
    [CrossRef]
  32. F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
    [CrossRef]
  33. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994).
    [CrossRef]
  34. C. Amra, “Light scattering from multilayer optics. II. Application to experiment,” J. Opt. Soc. Am. A 11, 211–226(1994).
    [CrossRef]
  35. J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983).
    [CrossRef] [PubMed]
  36. A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt. 32, 5475–5480 (1993).
    [CrossRef] [PubMed]
  37. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
    [CrossRef] [PubMed]
  38. International Organization for Standardization, “Optics and optical instruments. Test methods for radiation scattered by optical components,” ISO 13696 (International Organization for Standardization, 2002).
  39. International Organization for Standardization, “Determination of laser-induced damage threshold of optical surfaces—part 1: 1-on-1 test, ” ISO 11254-1 (International Organization for Standardization, 2000).
  40. L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).
  41. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
    [CrossRef]
  42. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  43. C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
    [CrossRef] [PubMed]
  44. M. Zerrad, C. Deumié, M. Lequime, and C. Amra, “An alternative scattering method to characterize surface roughness from transparent substrates,” Opt. Express 15, 9222–9231(2007).
    [CrossRef] [PubMed]
  45. A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
    [CrossRef]
  46. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
    [CrossRef] [PubMed]
  47. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
    [CrossRef]

2011 (1)

2010 (1)

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

2009 (1)

2008 (6)

C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, “Residual stress in Ta2O5–SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47, C167–C171 (2008).
[CrossRef] [PubMed]

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
[CrossRef]

J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008).
[CrossRef]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
[CrossRef]

2007 (1)

2006 (6)

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

2004 (2)

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

2003 (2)

D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003).
[CrossRef]

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

2001 (1)

1999 (1)

C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
[CrossRef]

1998 (1)

1996 (2)

C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef] [PubMed]

M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996).
[CrossRef]

1994 (2)

1993 (2)

1989 (1)

1988 (1)

1986 (2)

P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

1985 (1)

J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
[CrossRef]

1983 (1)

1982 (1)

D. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

1981 (1)

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

1939 (1)

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[CrossRef]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

1880 (2)

A. H. A. Lorentz, “Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der koerperdichte,” Ann. Phys. 245, 641–665 (1880).
[CrossRef]

L. Lorenz, “Ueber die refractionsconstante,” Ann. Phys. 247, 70–103 (1880).
[CrossRef]

Amra, C.

Aspnes, D.

D. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

Bartzsch, H.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

Bell, A.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Bennett, J. M.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

Cai, J.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Carniglia, C. K.

Chao, S.

Chien, C. H.

D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003).
[CrossRef]

Commandré, M.

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Cravetchi, I. V.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

DeBar, J. I.

Demiryont, H.

J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
[CrossRef]

DeNatale, J. F.

Deumié, C.

Dumas, P.

Duparré, A.

Ehlers, H.

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef] [PubMed]

Elson, J. M.

Emmert, L. A.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

Farabaugh, E. N.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

Feldman, A.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

Frach, P.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

Gäbler, D.

Gallais, L.

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

Geng, L.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Goedicke, K.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

Görtz, B.

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Gross, T.

Gujrathi, S. C.

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

Gunning, W. J.

Haller, W. K.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

Hurst, W. S.

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

Jaing, C.-C.

Janicki, V.

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
[CrossRef]

J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008).
[CrossRef]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
[CrossRef]

V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006).
[CrossRef] [PubMed]

Jensen, L.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef] [PubMed]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

Jeskevic, M.

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

Jupe, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

Jupé, M.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef] [PubMed]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

Kaiser, N.

Kassam, S.

Kerwin, D. B.

J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
[CrossRef]

Klemberg-Sapieha, J. E.

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

Kuo, D. H.

D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003).
[CrossRef]

Lange, S.

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

Lappschies, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef] [PubMed]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006).
[CrossRef] [PubMed]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

Larouche, S.

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

Lee, C.-C.

Lee, K.-S.

Leitel, R.

Lequime, M.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Liu, R.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Lorentz, A. H. A.

A. H. A. Lorentz, “Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der koerperdichte,” Ann. Phys. 245, 641–665 (1880).
[CrossRef]

Lorenz, L.

L. Lorenz, “Ueber die refractionsconstante,” Ann. Phys. 247, 70–103 (1880).
[CrossRef]

Mangote, B.

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

Martin, P. J.

P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

Martinu, L.

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

Marui, H.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

Melninkaitis, A.

Mero, M.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Mirauskas, J.

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

Nastase, S.

C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
[CrossRef]

Nguyen, D.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

Omiya, H.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Patterson, A. L.

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[CrossRef]

Ponce, F. A.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Pond, B. J.

Prasad, P. N.

M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996).
[CrossRef]

Rahn, J. P.

Raj, T.

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Richier, R.

Rickers, C.

Ristau, D.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006).
[CrossRef] [PubMed]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Roche, P.

Rotaru, C.

C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
[CrossRef]

Rudolph, W.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Sahoo, N. K.

N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006).
[CrossRef]

N. K. Sahoo and A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
[CrossRef]

Sancho-Parramon, J.

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
[CrossRef]

J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008).
[CrossRef]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
[CrossRef]

Sanders, D. M.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

Sankur, H.

Schlichting, S.

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

Shapiro, A. P.

Sirutkaitis, V.

Sites, J. R.

J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
[CrossRef]

Srinivasan, S.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Standardization, International Organization for

International Organization for Standardization, “Determination of laser-induced damage threshold of optical surfaces—part 1: 1-on-1 test, ” ISO 11254-1 (International Organization for Standardization, 2000).

International Organization for Standardization, “Optics and optical instruments. Test methods for radiation scattered by optical components,” ISO 13696 (International Organization for Standardization, 2002).

Starke, K.

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

Stempniak, R. A.

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

Stenzel, O.

Stevens, M.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Szymanowski, H.

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

Tanaka, S.

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Tang, C.-J.

Thakur, S.

N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006).
[CrossRef]

Tokas, R. B.

N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006).
[CrossRef]

Tomozeiu, N.

C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
[CrossRef]

Torricini, D.

Vergöhl, M.

Wang, W.-H.

Wilbrandt, S.

Wu, J.-Y.

Yoshida, M.

M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996).
[CrossRef]

Zerrad, M.

Zorc, H.

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
[CrossRef]

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
[CrossRef]

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

Ann. Phys. (3)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. I. Dielektrizitätskonstanten und leitfähigkeiten der mischkörper aus isotropen substanzen,” Ann. Phys. 416, 636–664 (1935).
[CrossRef]

A. H. A. Lorentz, “Ueber die beziehung zwischen der fortpflanzungsgeschwindigkeit des lichtes und der koerperdichte,” Ann. Phys. 245, 641–665 (1880).
[CrossRef]

L. Lorenz, “Ueber die refractionsconstante,” Ann. Phys. 247, 70–103 (1880).
[CrossRef]

Appl. Opt. (14)

J. M. Elson, J. P. Rahn, and J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983).
[CrossRef] [PubMed]

H. Sankur, W. J. Gunning, and J. F. DeNatale, “Intrinsic stress and structural properties of mixed composition thin films,” Appl. Opt. 27, 1564–1567 (1988).
[CrossRef] [PubMed]

B. J. Pond, J. I. DeBar, C. K. Carniglia, and T. Raj, “Stress reduction in ion beam sputtered mixed oxide films,” Appl. Opt. 28, 2800–2805 (1989).
[CrossRef] [PubMed]

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
[CrossRef] [PubMed]

N. K. Sahoo and A. P. Shapiro, “Process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite films evaporated from the solid solution,” Appl. Opt. 37, 698–718 (1998).
[CrossRef]

A. Duparré and S. Kassam, “Relation between light scattering and the microstructure of optical thin films,” Appl. Opt. 32, 5475–5480 (1993).
[CrossRef] [PubMed]

C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt. 35, 5583–5594 (1996).
[CrossRef] [PubMed]

S. Chao, W.-H. Wang, and C.-C. Lee, “Low-loss dielectric mirror with ion-beam-sputtered TiO2–SiO2 mixed films,” Appl. Opt. 40, 2177–2182 (2001).
[CrossRef]

C.-C. Lee, C.-J. Tang, and J.-Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt. 45, 1333–1337 (2006).
[CrossRef] [PubMed]

D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, “Optical broadband monitoring of conventional and ion processes,” Appl. Opt. 45, 1495–1501 (2006).
[CrossRef] [PubMed]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt. 45, 1502–1506 (2006).
[CrossRef] [PubMed]

V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, “Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating,” Appl. Opt. 45, 7851–7857 (2006).
[CrossRef] [PubMed]

C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, “Residual stress in Ta2O5–SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering,” Appl. Opt. 47, C167–C171 (2008).
[CrossRef] [PubMed]

L. Gallais, B. Mangote, M. Zerrad, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Laser induced damage of hafnia coatings as a function of pulse duration in the femtosecond to nanosecond range,” Appl. Opt. 50, C178–C187 (2011).

Appl. Phys. Lett. (2)

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112(2010).
[CrossRef]

D. Nguyen, L. A. Emmert, I. V. Cravetchi, M. Mero, W. Rudolph, M. Jupe, M. Lappschies, K. Starke, and D. Ristau, “TixSi1−xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation,” Appl. Phys. Lett. 93, 261903 (2008).
[CrossRef]

Chem. Mater. (1)

M. Yoshida and P. N. Prasad, “Sol-gel-processed SiO2/TiO2/poly(vinylpyrrolidone) composite materials for optical waveguides,” Chem. Mater. 8, 235–241 (1996).
[CrossRef]

J. Mater. Sci. (1)

P. J. Martin, “Ion-based methods for optical thin film deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. D (2)

N. K. Sahoo, S. Thakur, and R. B. Tokas, “Achieving superior band gap, refractive index and morphology in composite oxide thin film systems violating the moss rule,” J. Phys. D 39, 2571–2579 (2006).
[CrossRef]

J. Sancho-Parramon and V. Janicki, “Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5–SiO2 mixtures,” J. Phys. D 41, 215304 (2008).
[CrossRef]

J. Vac. Sci. Technol. (2)

S. Larouche, H. Szymanowski, J. E. Klemberg-Sapieha, L. Martinu, and S. C. Gujrathi, “Microstructure of plasma-deposited SiO2/TiO2 optical films,” J. Vac. Sci. Technol. 22, 1200–1207 (2004).
[CrossRef]

D. M. Sanders, E. N. Farabaugh, W. S. Hurst, and W. K. Haller, “Summary abstract: an advanced multi-chamber system for preparation of amorphous thin films by coevaporation and their subsequent characterization by AES, ESCA, SIMS and ISS methods,” J. Vac. Sci. Technol. 18, 1308–1310 (1981).
[CrossRef]

J. Vac. Sci. Technol. A (2)

A. Feldman, E. N. Farabaugh, W. K. Haller, D. M. Sanders, and R. A. Stempniak, “Modifying structure and properties of optical films by coevaporation,” J. Vac. Sci. Technol. A 4, 2969–2974 (1986).
[CrossRef]

J. R. Sites, H. Demiryont, and D. B. Kerwin, “Summary abstract: ion-beam sputter deposition of oxide films,” J. Vac. Sci. Technol. A 3, 656–656 (1985).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978–982 (1939).
[CrossRef]

Phys. Rev. B (2)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73, 224117 (2006).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Phys. Status Solidi A (1)

C. Rotaru, S. Nastase, and N. Tomozeiu, “Amorphous phase influence on the optical bandgap of polysilicon,” Phys. Status Solidi A 171, 365–370 (1999).
[CrossRef]

Phys. Status Solidi B (1)

F. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B 240, 273–284 (2003).
[CrossRef]

Proc. SPIE (1)

D. Ristau, H. Ehlers, S. Schlichting, and M. Lappschies, “State of the art in deterministic production of optical thin films,” Proc. SPIE 7101, 71010C (2008).
[CrossRef]

Surf. Coat. Technol. (1)

H. Bartzsch, S. Lange, P. Frach, and K. Goedicke, “Graded refractive index layer systems for antireflective coatings and rugate filters deposited by reactive pulse magnetron sputtering,” Surf. Coat. Technol. 180–181, 616–620 (2004).
[CrossRef]

Thin Solid Films (4)

J. Sancho-Parramon, V. Janicki, and H. Zorc, “Compositional dependence of absorption coefficient and band-gap for Nb2O5–SiO2 mixture thin films,” Thin Solid Films 516, 5478–5482 (2008).
[CrossRef]

V. Janicki, J. Sancho-Parramon, and H. Zorc, “Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories,” Thin Solid Films 516, 3368–3373(2008).
[CrossRef]

D. Aspnes, “Optical properties of thin films,” Thin Solid Films 89, 249–262 (1982).
[CrossRef]

D. H. Kuo and C. H. Chien, “Growth and properties of sputtered zirconia and zirconia–silica thin films,” Thin Solid Films 429, 40–45 (2003).
[CrossRef]

Other (5)

International Organization for Standardization, “Optics and optical instruments. Test methods for radiation scattered by optical components,” ISO 13696 (International Organization for Standardization, 2002).

International Organization for Standardization, “Determination of laser-induced damage threshold of optical surfaces—part 1: 1-on-1 test, ” ISO 11254-1 (International Organization for Standardization, 2000).

M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, “Applications of mixture oxide materials for fs optics,” in Optical Interference Coatings (Optical Society of America, 2007), p. TuA6.

URL: http://www.optilayer.com.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. London Ser. A 203, 385–420 (1904).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Principle of the IBS process.

Fig. 2
Fig. 2

Reflection and transmission of niobia–silica mixture coatings.

Fig. 3
Fig. 3

Reflection and transmission of zirconia– silica mixture coatings.

Fig. 4
Fig. 4

Refractive indices of niobia–silica mixture coatings extracted by using the Sellmeier formula fit from RT data.

Fig. 5
Fig. 5

Refractive indices of zirconia–silica mixture coatings extracted by using the Sellmeier formula fit from RT data.

Fig. 6
Fig. 6

Volumetric fraction of high-index material content (X) in niobia–silica composite coating.

Fig. 7
Fig. 7

Volumetric fraction of high-index material content (X) in zirconia–silica composite coating.

Fig. 8
Fig. 8

AFM images of pure zirconia, niobia, silica, and mixture zirconia–, niobia–silica coatings.

Fig. 9
Fig. 9

Comparison of surface roughnesses estimated by different methods.

Fig. 10
Fig. 10

X-ray diffraction patterns of substrate, pure niobia, pure silica, and niobia–silica mixture coatings.

Fig. 11
Fig. 11

X-ray diffraction patterns of substrate, pure zirconia, pure silica, and zirconia–silica mixture coatings.

Fig. 12
Fig. 12

LIDT dependence on f H in mixed metal oxide coatings; here, the fluency of incident wave is used.

Fig. 13
Fig. 13

Comparison of experimentally obtained LIDT data and model prediction with respect to different bandgap definitions.

Fig. 14
Fig. 14

Damage morphology of investigated coatings.

Tables (2)

Tables Icon

Table 1 Comparison of Sample Properties Obtained from Spectrophotometric Data

Tables Icon

Table 2 Exponential Decay Fit Parameters of LIDT Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R + A + S + T = 1 ,
MG : ε eff ε H ε eff + 2 ε H = ( 1 f H ) ε L ε H ε L + 2 ε H ,
BG : f H ε H ε eff ε H + 2 ε eff + ( 1 f H ) ε L ε eff ε L + 2 ε eff = 0 ,
LL : ε eff 1 ε eff + 2 = f H ε H 1 ε H + 2 + ( 1 f H ) ε L 1 ε L + 2 ,
σ RMS = S R · λ 4 π n 0 cos ( i 0 ) ,
d = 0.89 · λ δ · cos ( θ ) ,
LIDT ( f H ) = A · exp ( f H C ) + B .
F ( τ , E g ) = ( c 1 + c 2 · E g ) · τ K .

Metrics