Abstract

Multilayered structures were designed on both sides of a thin silver film to let both transverse-magnetic- and transverse-electric-polarized electromagnetic waves propagate along a thin metal film simultaneously in the same configuration, as so-called long-range surface-plasmon-polariton (LRSPP) waves. Based on the admittance analysis and design, the propagation length of an unpolarized LRSPP wave can be extended by more than 1 order of magnitude compared with previous results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986).
    [CrossRef]
  2. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  4. R. Adato and J. Guo, “Characteristics of ultra-long-range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
    [CrossRef] [PubMed]
  5. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17, 929–941 (1999).
    [CrossRef]
  6. F. Y. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987).
    [CrossRef] [PubMed]
  7. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007).
    [CrossRef] [PubMed]
  8. P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
    [CrossRef] [PubMed]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  10. A. Degiron and D. R. Smith, “Numerical simulations of long-range plasmons,” Opt. Express 14, 1611–1625 (2006).
    [CrossRef] [PubMed]
  11. J. Guo and R. Adato, “Extended long range plasmon waves in finite thickness metal film and layered dielectric materials,” Opt. Express 14, 12409–12418 (2006).
    [CrossRef] [PubMed]
  12. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. Larsen, and S. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  14. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006).
    [CrossRef]
  15. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
    [CrossRef]
  16. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600–2606 (2009).
    [CrossRef]
  17. C.-W. Yu and Y.-J. Jen, “Effects of the equivalent coupling layer on ultra-long-range surface-plasmon-polariton waves,” Opt. Express 18, 7982–7993 (2010).
    [CrossRef] [PubMed]
  18. H. A. Macleod, Thin-Film Optical Filters, 2nd ed.(Hilger, 1986).
    [CrossRef]
  19. Optical Thin-Film Software: The Essential Macleod (Thin Film Center Inc., Version 8.18.0).
  20. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009).
    [CrossRef]
  21. Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
    [CrossRef] [PubMed]
  22. M. Takabayashi, M. Haraguchi, and M. Fukui, “Propagation length of guided waves in lossy Si film sandwiched by identical dielectrics,” J. Opt. Soc. Am. B 12, 2406–2411(1995).
    [CrossRef]

2010 (1)

2009 (3)

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600–2606 (2009).
[CrossRef]

2007 (2)

R. Adato and J. Guo, “Characteristics of ultra-long-range surface plasmon waves at optical frequencies,” Opt. Express 15, 5008–5017 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[CrossRef] [PubMed]

2001 (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

1999 (1)

1997 (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[CrossRef] [PubMed]

1995 (1)

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1987 (1)

1986 (1)

L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Adato, R.

Andrew, P.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[CrossRef] [PubMed]

Anemogiannis, E.

Barnes, W. L.

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007).
[CrossRef] [PubMed]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S.

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Breukelaar, I.

Chan, T.-Y.

Charbonneau, R.

Degiron, A.

Fafard, S.

Fukui, M.

Gaylord, T. K.

Glytsis, E. N.

Guo, J.

Haraguchi, M.

Haupt, R.

L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

Homola, J.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

Jen, Y.-J.

Kjaer, K.

Kou, F. Y.

Lahoud, N.

Lakhtakia, A.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and T.-Y. Chan, “Multilayered structures for p- and s-polarized long-range surface-plasmon-polariton propagation,” J. Opt. Soc. Am. A 26, 2600–2606 (2009).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Larsen, M.

Leosson, K.

Lin, C.-F.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

Macleod, H. A.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[CrossRef] [PubMed]

H. A. Macleod, Thin-Film Optical Filters, 2nd ed.(Hilger, 1986).
[CrossRef]

Mattiussi, G.

Nenninger, G. G.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

Nikolajsen, T.

Salamon, Z.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[CrossRef] [PubMed]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Scales, C.

Smith, D. R.

Takabayashi, M.

Tamir, T.

Tobiska, P.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

Tollin, G.

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[CrossRef] [PubMed]

Wendler, L.

L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Yee, S. S.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

Yu, C.-W.

Adv. Opt. Photon. (1)

Biophys. J. (1)

Z. Salamon, H. A. Macleod, and G. Tollin, “Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties,” Biophys. J. 73, 2791–2797 (1997).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

L. Wendler and R. Haupt, “Long-range surface plasmon-polaritons in asymmetric layer structure,” J. Appl. Phys. 59, 3289–3291 (1986).
[CrossRef]

J. Lightwave Technol. (3)

J. Nanophoton. (1)

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506(2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7, 1376–1380 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (2)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Science (1)

P. Andrew and W. L. Barnes, “Energy transfer across a metal film mediated by surface plasmon polaritons,” Science 306, 1002–1005 (2004).
[CrossRef] [PubMed]

Sens. Actuators B (1)

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B 74, 145–151(2001).
[CrossRef]

Other (2)

H. A. Macleod, Thin-Film Optical Filters, 2nd ed.(Hilger, 1986).
[CrossRef]

Optical Thin-Film Software: The Essential Macleod (Thin Film Center Inc., Version 8.18.0).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mechanism for the LRSPP multilayer design in a normalized admittance diagram.

Fig. 2
Fig. 2

All possible loci in the NAD for a typical thin metal film with a refractive index N = n i k .

Fig. 3
Fig. 3

Imaginary parts of the Herpin indices as a function of the factor X at a wavelength of 632.8 nm for the unit cell [ Ta 2 O 5 ( X * 37.08 nm ) / SiO 2 ( X * 108.58 nm ) / Ta 2 O 5 ( X * 37.08 nm ) / SiO 2 ( X * 108.58 nm ) / Ta 2 O 5 ( X * 37.08 nm ) ].

Fig. 4
Fig. 4

(a) TM-polarized and (b) TE-polarized normalized admittance diagrams at θ i = 41 . 3101 ° for the optical configuration {glass prism/ [ Ta 2 O 5 ( 27.12 nm ) / SiO 2 ( 79.40 nm ) / Ta 2 O 5 ( 27.12 nm ) / SiO 2 ( 79.40 nm ) / Ta 2 O 5 ( 27.12 nm ) ] 76 /silver film ( 20 nm ) / [ Ta 2 O 5 ( 21.94 nm ) / SiO 2 ( 64.26 nm ) / Ta 2 O 5 ( 21.94 nm ) / SiO 2 ( 64.26 nm ) / Ta 2 O 5 ( 21.94 nm ) ] 12 /air} designed for unpolarized LRSPP propagation. The wavelength of incidence is 632.8 nm .

Fig. 5
Fig. 5

| r TM | 2 and | r TE | 2 plotted against θ i at λ = 632.8 nm for the following optical configuration: {glass prism/ [ Ta 2 O 5 ( 27.12 nm ) / SiO 2 ( 79.40 nm ) / Ta 2 O 5 ( 27.12 nm ) / SiO 2 ( 79.40 nm ) / Ta 2 O 5 ( 27.12 nm ) ] 76 /silver film ( 20 nm ) / [ Ta 2 O 5 ( 21.94 nm ) / SiO 2 ( 64.26 nm ) / Ta 2 O 5 ( 21.94 nm ) / SiO 2 ( 64.26 nm ) / Ta 2 O 5 ( 21.94 nm ) ] 12 /air}.

Fig. 6
Fig. 6

(a) Absolute value of the TE field profile ( | E y | ) for the TE-polarized mode at θ i = 41.3101 ° for the configuration depicted in Fig. 5. The close look of the TE mode profile near the silver film is shown in Fig. 6b.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = ( H / / / E / / ) μ 0 / ε 0 ζ = { N cos θ i / cos θ N cos θ / cos θ i , where ζ = { cos θ i 1 / cos θ i , polarization { TM TE ,

Metrics