Abstract

We present an efficient method for the absorption of slow group velocity electromagnetic waves in photonic crystal waveguides (PCWs). We show that adiabatically matching the low group velocity waves to high group velocity waves of the PCW and extending the PCW structure into the perfectly matched layer (PML) region results in a 15 dB reduction of spurious reflections from the PML. We also discuss the applicability of this method to structures other than PCWs.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
    [CrossRef]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  4. E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.
  5. H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
    [CrossRef]
  6. A. F. Matthews, “Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies,” Opt. Commun. 282, 1789–1792 (2009).
    [CrossRef]
  7. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
    [CrossRef]
  8. M. Askari and A. Adibi, “Wide bandwidth photonic crystal waveguide bends,” Proc. SPIE 7609, 760918 (2010).
    [CrossRef]
  9. M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
    [CrossRef]
  10. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  11. M. Askari, B. Momeni, M. Soltani, and A. Adibi, “Systematic design of wide bandwidth photonic crystal waveguide bends with high transmission and low dispersion,” J. Lightwave Technol. 28, 1707–1713 (2010).
    [CrossRef]
  12. S. Assefa, S. J. McNab, and Y. A. Vlasov, “Transmission of slow light through photonic crystal waveguide bends,” Opt. Lett. 31, 745–747 (2006).
    [CrossRef]
  13. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
    [CrossRef]
  14. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).
    [CrossRef]
  15. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Antennas Propag Mag. 14, 302–307 (1966).
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  17. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef]
  18. A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
    [CrossRef]
  19. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).
  20. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).
  21. D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
    [CrossRef]
  22. A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, 1995).
  23. Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004).
    [CrossRef]
  24. B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005).
    [CrossRef]

2010

2009

Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009).
[CrossRef]

A. F. Matthews, “Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies,” Opt. Commun. 282, 1789–1792 (2009).
[CrossRef]

2008

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

2007

2006

2005

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005).
[CrossRef]

2004

Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004).
[CrossRef]

2001

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

1999

A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
[CrossRef]

1996

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

1994

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

1980

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

1966

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Antennas Propag Mag. 14, 302–307 (1966).

Adibi, A.

M. Askari, B. Momeni, M. Soltani, and A. Adibi, “Systematic design of wide bandwidth photonic crystal waveguide bends with high transmission and low dispersion,” J. Lightwave Technol. 28, 1707–1713 (2010).
[CrossRef]

M. Askari and A. Adibi, “Wide bandwidth photonic crystal waveguide bends,” Proc. SPIE 7609, 760918 (2010).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005).
[CrossRef]

Askari, M.

M. Askari and A. Adibi, “Wide bandwidth photonic crystal waveguide bends,” Proc. SPIE 7609, 760918 (2010).
[CrossRef]

M. Askari, B. Momeni, M. Soltani, and A. Adibi, “Systematic design of wide bandwidth photonic crystal waveguide bends with high transmission and low dispersion,” J. Lightwave Technol. 28, 1707–1713 (2010).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

Assefa, S.

Baba, T.

Bayindir, M.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Biswas, R.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Borel, P. I.

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Eftekhar, A.

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Fan, S.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Fisher, R.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Frandsen, L. H.

Hamachi, Y.

Ho, K. M.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Hsue, Y-C.

Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004).
[CrossRef]

Huang, J.

Joannopoulos, J. D.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

Kjems, J.

Koshiba, M.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).

Kristensen, M.

Kubo, S.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Matthews, A. F.

A. F. Matthews, “Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies,” Opt. Commun. 282, 1789–1792 (2009).
[CrossRef]

McNab, S. J.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Merewether, D. E.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Mohammadi, S.

Momeni, B.

M. Askari, B. Momeni, M. Soltani, and A. Adibi, “Systematic design of wide bandwidth photonic crystal waveguide bends with high transmission and low dispersion,” J. Lightwave Technol. 28, 1707–1713 (2010).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, “Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms,” Opt. Express 14, 2413–2422 (2006).
[CrossRef]

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
[CrossRef]

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Pollock, R.

R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

Rakhshandehroo, M.

Sasaki, S.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Siqalas, M. M.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Skivesen, N.

Smith, F. W.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

Soltani, M.

Taflove, A.

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, 1995).

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Temelkuran, B.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Tetu, A.

Tsuji, Y.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).

Tuttle, G.

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

Vlasov, Y. A.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yang, T.-J.

Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Antennas Propag Mag. 14, 302–307 (1966).

Yegnanarayanan, S.

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Yokohoma, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Appl. Phys. Lett.

B. Momeni and A. Adibi, “Adiabatic matching stage for coupling of light to extended Bloch modes of photonic crystals,” Appl. Phys. Lett. 87, 171104–13 (2005).
[CrossRef]

IEEE Antennas Propag Mag.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Antennas Propag Mag. 14, 302–307 (1966).

IEEE Microw. Guided Wave Lett.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides,” IEEE Microw. Guided Wave Lett. 9, 502–504 (1999).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001).

IEEE Trans. Nucl. Sci.

D. E. Merewether, R. Fisher, and F. W. Smith, “On implementing a numeric Huygen’s source scheme in a finite difference program to illuminate scattering bodies,” IEEE Trans. Nucl. Sci. 27, 1829–1833 (1980).
[CrossRef]

J. Appl. Phys.

H. Caglayan, I. Bulu, and E. Ozbay, “Off-axis beaming from subwavelength aperture,” J. Appl. Phys. 104, 073108 (2008).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

A. F. Matthews, “Experimental demonstration of self-collimation beaming and splitting in photonic crystals at microwave frequencies,” Opt. Commun. 282, 1789–1792 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Phy. Rev. Lett.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohoma, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phy. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Phys. Rev. E

Y-C. Hsue and T.-J. Yang, “Applying a modified plane-wave expansion method to the calculations of transmittivity and reflectivity of a semi-infinite photonic crystal,” Phys. Rev. E 70, 016706 (2004).
[CrossRef]

Phys. Rev. Lett.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef]

Proc. SPIE

M. Askari and A. Adibi, “Wide bandwidth photonic crystal waveguide bends,” Proc. SPIE 7609, 760918 (2010).
[CrossRef]

M. Askari, B. Momeni, S. Yegnanarayanan, A. Eftekhar, and A. Adibi, “Efficient coupling of light into the planar photonic crystal waveguides in the slow group velocity regime,” Proc. SPIE 6901, 69011A (2008).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

E. Ozbay, B. Temelkuran, M. Bayindir, R. Biswas, M. M. Siqalas, G. Tuttle, and K. M. Ho, “Highly directional resonant antennas built around photonic crystals,” in 1999 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 1999), pp. 8–11.

R. Pollock, Fundamentals of Optoelectronics (Irwin, 1995).

A. Taflove, Computational Electromagnetics: The Finite-Difference Time-Domain Method (Artech, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics