Abstract

The National Ignition Facility (NIF) is the world’s largest optical instrument, comprising 192 37cm square beams, each generating up to 9.6kJ of 351nm laser light in a 20ns beam precisely tailored in time and spectrum. The Facility houses a massive (10m diameter) target chamber within which the beams converge onto an 1cm size target for the purpose of creating the conditions needed for deuterium/tritium nuclear fusion in a laboratory setting. A formidable challenge was building NIF to the precise requirements for beam propagation, commissioning the beam lines, and engineering systems to reliably and safely align 192 beams within the confines of a multihour shot cycle. Designing the facility to minimize drift and vibration, placing the optical components in their design locations, commissioning beam alignment, and performing precise system alignment are the key alignment accomplishments over the decade of work described herein. The design and positioning phases placed more than 3000 large (2.5m×2m×1m) line-replaceable optics assemblies to within ±1mm of design requirement. The commissioning and alignment phases validated clear apertures (no clipping) for all beam lines, and demonstrated automated laser alignment within 10min and alignment to target chamber center within 44min. Pointing validation system shots to flat gold-plated x-ray emitting targets showed NIF met its design requirement of ±50μm rms beam pointing to target chamber. Finally, this paper describes the major alignment challenges faced by the NIF Project from inception to present, and how these challenges were met and solved by the NIF design and commissioning teams.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
    [CrossRef]
  2. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
    [CrossRef]
  3. G. L. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” Proc. SPIE 3047, 649–660 (1997).
    [CrossRef]
  4. C. LeCocq, B. Fuss, and R. R. Ruland, “Status report on the alignment activities at SLAC,” in Proceedings of the 8th International Workshop on Accelerator Alignment (IWAA 2004), http://www.slac.stanford.edu/econf/C04100411/.
  5. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
    [CrossRef]
  6. M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
    [CrossRef]
  7. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
    [CrossRef]
  8. M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
    [CrossRef]
  9. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715–1717 (1996).
    [CrossRef]
  10. J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities,” Appl. Opt. 40, 1404–1411 (2001).
    [CrossRef]
  11. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–303 (2007).
    [CrossRef]
  12. NIF Requirement 5500902-OC, “Laser system beam control & diagnostics shall point the main laser beam to center of CSF pass1 and CSF pass2 shot pinhole locations with an accuracy of better than 10% of the pinhole diameter. Laser system beam control & diagnostics shall point the main laser beam to center of CSF pass3, CSF pass4, TSF pass1 and TSF pass4 shot pinhole locations with an accuracy of better than 5% of the pinhole diameter.”
  13. NIF Requirement 5500905-0B, “For each shot, position each beam at any location within 5 cm of target chamber center such that the rms deviation of all beams from their specified positions is 50 μm or less when measured perpendicular to the beam propagation directions. No single beam shall deviate more than 200 μm. This requirement applies equally to all beams whether directed at the principal target or at equatorial backlighting targets. The accuracy of surrogate alignment shall be periodically validated by direct detection of low level pulses.”
  14. S. C. Sommer and E. S. Bliss, “Beam positioning,” Proc. SPIE 3492, 112–135 (1999).
    [CrossRef]
  15. C. R. Noble, M. S. Hoehler, and S. C. Sommer, “NIF ambient vibration measurements” (2002), http://www.osti.gov/servlets/purl/802614-CVIu1A/native/.
  16. P. Kemple, “Vibration measurements at NIF Site,” NIF Project Internal Report NIF-0062282 (6 February 2001).
  17. M. Tabatabale and S. Sommer, “Analysis of soil-structure interaction due to ambient vibration,” ASME Publications PVP 364 (1998), pp. 397–406.
  18. G. S. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” LLNL report UCRL-JC-125396 (1996), http://www.osti.gov/bridge/purl.cover.jsp?purl=/471333-QXPIoZ/webviewable/.
  19. R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
    [CrossRef]
  20. R. E. English, “Clear aperture budget for main laser system (LM1–SF4),” NIF-0000475 (19 August 1996) (internal NIF document).
  21. S. C. Burkhart, “Component placement and optical tolerancing requirements,” NIF-0053005 (16 August 2000) (internal NIF document).
  22. S. C. Burkhart, “NIF clear aperture—optical component placement tolerance revalidation,” NIF-5007159 (14 November 2000) (internal NIF document).
  23. D. W. Larson, “NIF laser line-replaceable units (LRUs),” Proc. SPIE 5341, 127–136 (2004).
    [CrossRef]
  24. R. E. Bonanno, “Assembling and installing line-replaceable units for the National Ignition Facility,” Opt. Eng. 432866–2872 (2004).
    [CrossRef]
  25. E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
    [CrossRef]
  26. R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
    [CrossRef]
  27. F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
    [CrossRef]
  28. K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.
  29. W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
    [CrossRef]
  30. A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
    [CrossRef]
  31. A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
    [CrossRef]
  32. A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, J. T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038–3048 (2006).
    [CrossRef]
  33. A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190–5196 (2009).
    [CrossRef]
  34. J. V. Candy, W. A. McClay, A. A. S. Awwal, and S. W. Ferguson, “Optimal position estimation for the automatic alignment of a high-energy laser,” J. Opt. Soc. Am. A 22, 1348–1356 (2005).
    [CrossRef]
  35. J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
    [CrossRef]
  36. S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
    [CrossRef]

2010 (1)

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

2009 (2)

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190–5196 (2009).
[CrossRef]

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

2004 (8)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

D. W. Larson, “NIF laser line-replaceable units (LRUs),” Proc. SPIE 5341, 127–136 (2004).
[CrossRef]

R. E. Bonanno, “Assembling and installing line-replaceable units for the National Ignition Facility,” Opt. Eng. 432866–2872 (2004).
[CrossRef]

W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

2001 (2)

1999 (2)

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

S. C. Sommer and E. S. Bliss, “Beam positioning,” Proc. SPIE 3492, 112–135 (1999).
[CrossRef]

1998 (1)

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

1997 (2)

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

G. L. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” Proc. SPIE 3047, 649–660 (1997).
[CrossRef]

1996 (1)

1995 (2)

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

Ables, E.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Alger, T. W.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Alvarez, S. S.

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Amendt, P.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Arnold, T. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Atherton, L. J.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Auerbach, J. M.

Awwal, A.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Awwal, A. A. S.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
[CrossRef]

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190–5196 (2009).
[CrossRef]

A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, J. T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038–3048 (2006).
[CrossRef]

J. V. Candy, W. A. McClay, A. A. S. Awwal, and S. W. Ferguson, “Optimal position estimation for the automatic alignment of a high-energy laser,” J. Opt. Soc. Am. A 22, 1348–1356 (2005).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
[CrossRef]

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Bell, P. M.

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Berger, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Biltoft, P. J.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Bliss, E. S.

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

S. C. Sommer and E. S. Bliss, “Beam positioning,” Proc. SPIE 3492, 112–135 (1999).
[CrossRef]

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

Boege, S. J.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Boley, C. D.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Bonanno, R. E.

R. E. Bonanno, “Assembling and installing line-replaceable units for the National Ignition Facility,” Opt. Eng. 432866–2872 (2004).
[CrossRef]

Bowers, M.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Bowers, M. W.

Boyd, R. D.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Bradley, D. K.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Burkhart, S.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Burkhart, S. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
[CrossRef]

S. C. Burkhart, “NIF clear aperture—optical component placement tolerance revalidation,” NIF-5007159 (14 November 2000) (internal NIF document).

S. C. Burkhart, “Component placement and optical tolerancing requirements,” NIF-0053005 (16 August 2000) (internal NIF document).

Callahan, D. A.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Candy, J. V.

A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, J. T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038–3048 (2006).
[CrossRef]

J. V. Candy, W. A. McClay, A. A. S. Awwal, and S. W. Ferguson, “Optimal position estimation for the automatic alignment of a high-energy laser,” J. Opt. Soc. Am. A 22, 1348–1356 (2005).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
[CrossRef]

Chocol, C. J.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Cohen, S.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Cohen, S. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Couture, S. A.

Davis, D. T.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Demaret, R. D.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Dewald, E. L.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Divol, L.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Dixit, S. N.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–303 (2007).
[CrossRef]

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, “Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,” Opt. Lett. 21, 1715–1717 (1996).
[CrossRef]

Dzenitis, E.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Edwards, M. J.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Eimerl, D.

English, R. E.

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

R. E. English, “Clear aperture budget for main laser system (LM1–SF4),” NIF-0000475 (19 August 1996) (internal NIF document).

Erbert, G.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Erbert, G. V.

Feit, M. D.

Feldman, M.

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

Ferguson, S. W.

Ferguson, W.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Ferguson, W. S.

Fochs, S. N.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Funkhouser, B.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Fuss, B.

C. LeCocq, B. Fuss, and R. R. Ruland, “Status report on the alignment activities at SLAC,” in Proceedings of the 8th International Workshop on Accelerator Alignment (IWAA 2004), http://www.slac.stanford.edu/econf/C04100411/.

Glendenning, S. G.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Glenzer, S. H.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Haan, S. W.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Hackel, L. A.

Hamza, A. V.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Haynam, C. A.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–303 (2007).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

Heebner, J.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Heestand, G. M.

Henesian, M. A.

Hermann, M.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Hermann, M. R.

Hibbard, R. L.

Hinkel, D. E.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Hoehler, M. S.

C. R. Noble, M. S. Hoehler, and S. C. Sommer, “NIF ambient vibration measurements” (2002), http://www.osti.gov/servlets/purl/802614-CVIu1A/native/.

Holdener, F. R.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Honig, J.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

Horowitz, B.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Jancaitis, K. S.

Jedlovec, D.

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

Kalantar, D. H.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Kaufmann, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Kemple, P.

P. Kemple, “Vibration measurements at NIF Site,” NIF Project Internal Report NIF-0062282 (6 February 2001).

Kilkenny, J. D.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Kline, J. L.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Koch, J. A.

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Kyrala, G. A.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Landen, O. L.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Landen, O. T.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Landon, M. D.

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Larson, D. W.

D. W. Larson, “NIF laser line-replaceable units (LRUs),” Proc. SPIE 5341, 127–136 (2004).
[CrossRef]

Latta, M. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Laumann, C. W.

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

LeCocq, C.

C. LeCocq, B. Fuss, and R. R. Ruland, “Status report on the alignment activities at SLAC,” in Proceedings of the 8th International Workshop on Accelerator Alignment (IWAA 2004), http://www.slac.stanford.edu/econf/C04100411/.

Lee, F. D.

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

LePape, S.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Lindl, J. D.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

MacGowan, B. J.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Manes, K. R.

Marshall, C. D.

McClay, W. A.

Meezan, N. B.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Mehta, N. C.

Menapace, J.

Michel, P.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Milam, D.

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Miller, J. L.

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Miller-Kamm, V.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Moody, J. D.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Moses, E.

Moses, E. I.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Murray, J. E.

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

Murray, J. R.

Nikroo, A.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Noble, C. R.

C. R. Noble, M. S. Hoehler, and S. C. Sommer, “NIF ambient vibration measurements” (2002), http://www.osti.gov/servlets/purl/802614-CVIu1A/native/.

Norton, M. A.

Nostrand, M. C.

Orth, C. D.

Parham, T.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Patterson, R.

Perry, M. D.

Pigg, D. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Powell, H. T.

Reynolds, C.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Rhodes, M. A.

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

Rice, K. L.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
[CrossRef]

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190–5196 (2009).
[CrossRef]

Ruland, R. R.

C. LeCocq, B. Fuss, and R. R. Ruland, “Status report on the alignment activities at SLAC,” in Proceedings of the 8th International Workshop on Accelerator Alignment (IWAA 2004), http://www.slac.stanford.edu/econf/C04100411/.

Sacks, R. A.

Salmon, J. T.

A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, J. T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038–3048 (2006).
[CrossRef]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Schneider, M. B.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Seppala, L. G.

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

Shaw, M. J.

Sommer, S.

M. Tabatabale and S. Sommer, “Analysis of soil-structure interaction due to ambient vibration,” ASME Publications PVP 364 (1998), pp. 397–406.

Sommer, S. C.

S. C. Sommer and E. S. Bliss, “Beam positioning,” Proc. SPIE 3492, 112–135 (1999).
[CrossRef]

G. L. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” Proc. SPIE 3047, 649–660 (1997).
[CrossRef]

G. S. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” LLNL report UCRL-JC-125396 (1996), http://www.osti.gov/bridge/purl.cover.jsp?purl=/471333-QXPIoZ/webviewable/.

C. R. Noble, M. S. Hoehler, and S. C. Sommer, “NIF ambient vibration measurements” (2002), http://www.osti.gov/servlets/purl/802614-CVIu1A/native/.

Spaeth, M.

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

Stolz, C. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Stowers, I. F.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

Suter, L. J.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Sutton, S. B.

Tabatabale, M.

M. Tabatabale and S. Sommer, “Analysis of soil-structure interaction due to ambient vibration,” ASME Publications PVP 364 (1998), pp. 397–406.

Taha, T. M.

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Hardware accelerated optical alignment of lasers using beam-specific matched-filters,” Appl. Opt. 48, 5190–5196 (2009).
[CrossRef]

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
[CrossRef]

Thomas, S. W.

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

Tietbohl, G. L.

G. L. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” Proc. SPIE 3047, 649–660 (1997).
[CrossRef]

Tietbohl, G. S.

G. S. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” LLNL report UCRL-JC-125396 (1996), http://www.osti.gov/bridge/purl.cover.jsp?purl=/471333-QXPIoZ/webviewable/.

Town, R. P. J.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Van Atta, R. L.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Van Wonterghem, B.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Van Wonterghem, B. M.

Vann, C. S.

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

Wegner, P.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

A. A. S. Awwal, W. A. McClay, W. S. Ferguson, J. V. Candy, J. T. Salmon, and P. Wegner, “Detection and tracking of the back-reflection of KDP images in the presence or absence of a phase mask,” Appl. Opt. 45, 3038–3048 (2006).
[CrossRef]

Wegner, P. J.

White, R. K.

Whitman, P.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Whitman, P. K.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, “Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities,” Appl. Opt. 40, 1404–1411 (2001).
[CrossRef]

Widmann, K.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Widmayer, C. C.

C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–303 (2007).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

Wilhelmsen, K.

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Williams, W. H.

Winters, S. E.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Wuest, C. R.

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

Yang, S. T.

Young, B. K. F.

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Opt. Eng. (4)

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, “Alignment and wavefront control systems of the National Ignition Facility,” Opt. Eng. 43, 2873–2884(2004).
[CrossRef]

G. H. Miller, E. I. Moses, and C. R. Wuest, “The National Ignition Facility,” Opt. Eng. 43, 2841–2853 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, “National Ignition Facility wavefront requirements and optical architecture,” Opt. Eng. 43, 2854–2865 (2004).
[CrossRef]

R. E. Bonanno, “Assembling and installing line-replaceable units for the National Ignition Facility,” Opt. Eng. 432866–2872 (2004).
[CrossRef]

Opt. Laser Technol. (1)

A. A. S. Awwal, K. L. Rice, and T. M. Taha, “Fast implementation of matched-filter-based automatic alignment image processing,” Opt. Laser Technol. 41, 193–197 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, “The physics basis for ignition using indirect-drive targets on the National Ignition Facility,” Phys. Plasmas 11, 339–491 (2004).
[CrossRef]

Proc. SPIE (11)

M. Bowers, S. Burkhart, S. Cohen, G. Erbert, J. Heebner, M. Hermann, and D. Jedlovec, “The injection laser system on the National Ignition Facility,” Proc. SPIE 6451, 64511M(2007).
[CrossRef]

D. W. Larson, “NIF laser line-replaceable units (LRUs),” Proc. SPIE 5341, 127–136 (2004).
[CrossRef]

G. L. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” Proc. SPIE 3047, 649–660 (1997).
[CrossRef]

M. A. Rhodes, S. N. Fochs, P. J. Biltoft, T. W. Alger, B. Funkhouser, and C. D. Boley, “Plasma electrode Pockels cell for the National Ignition Facility,” Proc. SPIE 3492, 144–147(1999).
[CrossRef]

E. S. Bliss, M. Feldman, J. E. Murray, and C. S. Vann, “Laser chain alignment with low-power local light sources,” Proc. SPIE 2633, 760–767 (1995).
[CrossRef]

R. E. English, L. G. Seppala, C. S. Vann, and E. S. Bliss, “Use of an intermediate wavelength laser for alignment to inertial confinement fusion targets,” Proc. SPIE 2633, 603–607 (1995). Author’s note: the NIF design was modified from the 389 nm source listed in this reference to a 375 nmsource.
[CrossRef]

F. R. Holdener, E. Ables, E. S. Bliss, S. J. Boege, R. D. Boyd, C. J. Chocol, D. T. Davis, R. D. Demaret, R. E. English, C. W. Laumann, J. L. Miller, and S. W. Thomas, “Beam control and diagnostic functions in the NIF transport spatial filter,” Proc. SPIE 3047, 692–699 (1997). Author’s note: the “3ω sampled beam diagnostic” described in this reference was eliminated from the design for reasons of protection from 351 nm backscattered light. In addition, the TSF reticle functions were no longer required and were eliminated.
[CrossRef]

W. A. McClay III, A. A. S. Awwal, S. C. Burkhart, and J. V. Candy, “Optimization and improvement of FOA corner cube algorithm,” Proc. SPIE 5556, 227–232 (2004).
[CrossRef]

A. A. S. Awwal, J. V. Candy, C. A. Haynam, C. C. Widmayer, E. S. Bliss, and S. C. Burkhart, “Accurate position sensing of defocused beams using simulated beam templates,” Proc. SPIE 5556, 233–242 (2004).
[CrossRef]

S. C. Sommer and E. S. Bliss, “Beam positioning,” Proc. SPIE 3492, 112–135 (1999).
[CrossRef]

R. E. English, C. W. Laumann, J. L. Miller, and L. G. Seppala, “Optical system design of the National Ignition Facility,” Proc. SPIE 3482, 726–736 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

J. A. Koch, S. S. Alvarez, P. M. Bell, F. D. Lee, J. D. Moody, and M. D. Landon, “Design of the National Ignition Facility static x-ray imager,” Rev. Sci. Instrum. 72, 698–700 (2001).
[CrossRef]

Science (1)

S. H. Glenzer, B. J. MacGowan, P. Michel, N. B. Meezan, L. J. Suter, S. N. Dixit, J. L. Kline, G. A. Kyrala, D. K. Bradley, D. A. Callahan, E. L. Dewald, L. Divol, E. Dzenitis, M. J. Edwards, A. V. Hamza, C. A. Haynam, D. E. Hinkel, D. H. Kalantar, J. D. Kilkenny, O. L. Landen, J. D. Lindl, S. LePape, J. D. Moody, A. Nikroo, T. Parham, M. B. Schneider, R. P. J. Town, P. Wegner, K. Widmann, P. Whitman, B. K. F. Young, B. Van Wonterghem, L. J. Atherton, and E. I. Moses, “Symmetric inertial confinement fusion implosions at ultra-high laser energies,” Science 327, 1228–1231(2010).
[CrossRef]

Other (11)

C. LeCocq, B. Fuss, and R. R. Ruland, “Status report on the alignment activities at SLAC,” in Proceedings of the 8th International Workshop on Accelerator Alignment (IWAA 2004), http://www.slac.stanford.edu/econf/C04100411/.

R. E. English, “Clear aperture budget for main laser system (LM1–SF4),” NIF-0000475 (19 August 1996) (internal NIF document).

S. C. Burkhart, “Component placement and optical tolerancing requirements,” NIF-0053005 (16 August 2000) (internal NIF document).

S. C. Burkhart, “NIF clear aperture—optical component placement tolerance revalidation,” NIF-5007159 (14 November 2000) (internal NIF document).

C. R. Noble, M. S. Hoehler, and S. C. Sommer, “NIF ambient vibration measurements” (2002), http://www.osti.gov/servlets/purl/802614-CVIu1A/native/.

P. Kemple, “Vibration measurements at NIF Site,” NIF Project Internal Report NIF-0062282 (6 February 2001).

M. Tabatabale and S. Sommer, “Analysis of soil-structure interaction due to ambient vibration,” ASME Publications PVP 364 (1998), pp. 397–406.

G. S. Tietbohl and S. C. Sommer, “Stability design considerations for mirror support systems in ICF lasers,” LLNL report UCRL-JC-125396 (1996), http://www.osti.gov/bridge/purl.cover.jsp?purl=/471333-QXPIoZ/webviewable/.

NIF Requirement 5500902-OC, “Laser system beam control & diagnostics shall point the main laser beam to center of CSF pass1 and CSF pass2 shot pinhole locations with an accuracy of better than 10% of the pinhole diameter. Laser system beam control & diagnostics shall point the main laser beam to center of CSF pass3, CSF pass4, TSF pass1 and TSF pass4 shot pinhole locations with an accuracy of better than 5% of the pinhole diameter.”

NIF Requirement 5500905-0B, “For each shot, position each beam at any location within 5 cm of target chamber center such that the rms deviation of all beams from their specified positions is 50 μm or less when measured perpendicular to the beam propagation directions. No single beam shall deviate more than 200 μm. This requirement applies equally to all beams whether directed at the principal target or at equatorial backlighting targets. The accuracy of surrogate alignment shall be periodically validated by direct detection of low level pulses.”

K. Wilhelmsen, A. Awwal, W. Ferguson, B. Horowitz, V. Miller-Kamm, and C. Reynolds, “Automatic alignment system for the National Ignition Facility,” in Proceedings of 2007 International Conference on Accelerator and Large Experimental Control Systems (ICALEPCS07) (2007), pp. 486–490, http://accelconf.web.cern.ch/accelconf/ica07/PAPERS/ROAA02.PDF.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1
Fig. 1

The NIF building is approximately 150 m × 90 m and seven stories tall. It comprises 11 sections; two laser bays, four power conditioning bays, two beam switchyards, a target bay, a diagnostic building, and a core controls and oscillator area. Supporting facility buildings include optical processing facilities for optical LRU assembly and acceptance testing, electrical and other specialized utilities, and office space. The roof is “removed” in this view to facilitate the reader’s understanding of the physical layout.

Fig. 2
Fig. 2

Photograph of laser-bay 2 from atop the main amplifiers. The large piping in the foreground is for amplifier and flashlamp cavity purge and cooling gas. The blue structures upon which the workers are standing are vacuum vessels for SF1, the first spatial filter lens. Midimage is dominated by the amplifier cavity spatial filter tubes and central vessel. Beyond that is the rise of the periscope section, within which resides the LM2, LM3, polarizer, PEPC electronics racks, and PEPC, described in Section 2. The laser-bay to switchyard wall can be seen at the far end of the image.

Fig. 3
Fig. 3

Upper hemisphere of the 10 m diameter target chamber. Four beams at a time enter the chamber through the large, rectangular, FOS structures. They include optics for frequency conversion, phase-plate beam conditioning, vacuum barrier, focus, diagnostics, and debris protection.

Fig. 4
Fig. 4

The vacuum vessels containing a cluster of SF4 TSF lenses (see Fig. 5) were installed and precision aligned in 2001, with a ± 1 mm requirement on lens center placement tolerance. They were commissioned for alignment and shots in 2008 with no intervening alignment.

Fig. 5
Fig. 5

Schematic layout for one of the 192 beam lines, from fiber oscillator to fusion target. The pulse is created, amplified, and then injected into the TSF. After four amplification passes in the cavity and two in the power amplifier, it is transported to the target chamber, frequency converted and conditioned, and focused onto the target.

Fig. 6
Fig. 6

ILS regenerative amplifier. Light from the MOR fiber launch is collimated and injected through an isolator and polarizer into the main regenerative amplifier cavity. After the pulse passes through it, the Pockels cell PC1 is switched on, trapping the pulse in the cavity for 57 round trips. During each round trip, the pulse passes twice through a diode-pumped rod amplifier. PC1 is switched off to transport the amplified beam to the output. A motorized half-wave plate in combination with a set of polarizers controls the energy transmitted to the next stage of amplification. A 20 × beam expander in combination with a beam-shaping module spatially shapes the beam to the desired profile.

Fig. 7
Fig. 7

There are 48 multipass preamplifiers for NIF, one for each quad of beams. Light from the preceding regenerative amplifier is amplified to approximately 2 J through four passes within the 32 mm diameter flashlamp-pumped rod amplifier.

Fig. 8
Fig. 8

Schematic of the ISP), PABTS, and lower-injection sections. The output from each PAM is aligned to the ISP centering and pointing references, as is the ISP-cw alignment laser. Then each of the 48 beams (one shown here) undergo a 4 × split prior to alignment into the each of the 192 main-laser TSFs.

Fig. 9
Fig. 9

Beams are transported to the final optics by mirrors LM4–LM8. Mirrors LM5 and LM8 comprise the remotely actuated gimbal pair for alignment to TCC.

Fig. 10
Fig. 10

A series of fused-silica and KDP optics comprise NIF final optics as detailed here. The continuous phase plate is in one location or the other, never both, and the polarization rotator is present for only half the beams.

Fig. 11
Fig. 11

Target pointing performance is subject to alignment terms, vibration and pressure fluctuation ( > 2 Hz ), and thermal drift terms ( < 2 Hz ). These terms were partially validated, with the final performance fully validated. The 50 μm rms pointing requirement does not include the 6.8 μm target positioning, thus beam pointing was projected to meet the requirement.

Fig. 12
Fig. 12

Alignment perturbing effects from all possible man-made and natural effects were assessed and reduced by mitigation at the source (if possible), by limiting the coupling into the facility and to the structure, and by designing the alignment-sensitive structures to have the minimum response.

Fig. 13
Fig. 13

The NIF design is tied to OCDs. An excerpt from the main-laser OCD is shown here. The position of each beam in space and the beam centers on mirrors, lenses, and other optics are controlled by design, and all other structures including the building were designed around the optical configuration.

Fig. 14
Fig. 14

Beam center on the main-laser cavity optics was modeled through Monte Carlo application of design tolerances for fabrication and positioning. This shows the result for beam center for 2000 Monte Carlo samples; the tolerance at each optic is shown as the bound ing box.

Fig. 15
Fig. 15

The 10 m diameter NIF target chamber was installed (1999) as part of building construction, with the roof installed afterward. The covered square ports admit four beams each, 24 “indirect-target-drive” ports surrounding each pole. The equatorial square ports are for an alternative “direct target drive” configuration, which may be used later in NIF’s life. The round ports are for diagnostics, vacuum, and alignment purposes, and the large port on the bottom is for maintenance access.

Fig. 16
Fig. 16

Alignment commissioning was subdivided into the four regions of the relay optics, preamplifier, main laser, and beam transport to TCC.

Fig. 17
Fig. 17

A commissioning version of this TSFA tower and the other two tower types were used to commission main-laser and relay optics alignment. Once the beam lines were commissioned, the shot-capable operations towers were installed. The multitude of internal adjustments and calibrations required on each tower LRU were performed off-line in a test stand surveyed and certified to replicate the on-line specifications.

Fig. 18
Fig. 18

Relay optics were positioned to LOSs established from the output sensor to the alignment and diagnostic towers in the TSF. A modified survey instrument (“plummet”) established the lower vertical LOS, and surveyed fiducialized blanks viewed through the plummet established the other two LOSs to the illuminated tower references. Two paths (one for alignment and one for diagnostics/wavefront) were commissioned for each beam line—384 total.

Fig. 19
Fig. 19

Gallery of images processed by the automatic alignment system during beam and target alignment. Images are acquired by CCD cameras in the ISP, OSP, target alignment sensor, and chamber center reference system.

Fig. 20
Fig. 20

Pointing and centering references for the NIF laser. Centering references are the PAM M4, ISP fixed reference, and the LM3 light source. Pointing references are the PAM VRT-2 pinhole, ISP camera, TSF pass 4 pinhole, and the target alignment sensor (not shown).

Fig. 21
Fig. 21

SXI camera image for the NIF pointing validation shot. Forty-eight upper and 48 lower beams (not shown) are pointed to coordinates on a flat Au-coated Si target. An additional four bottom beams and four top beams are aimed at 40 μm holes to provide registration and scale from the upper to lower side and vice versa. A shot is fired with a 100 ps pulse and the x-ray image captured as shown for the upper SXI. An equivalent image is taken for the lower SXI.

Fig. 22
Fig. 22

Beam pointing error relative to target aim point for a target plane normal to the chamber z axis (vertical axis). Analysis of these errors relative to each beam’s origination coordinates around the chamber, correcting for each beam’s cos ( θ ) projections, yields a 48 μm rms pointing error normal to the beams, meeting the NIF requirement of 50 μm rms. For reference, the nominal Hohlraum target [5] laser entrance hole is 3.1 mm in diameter, 10 × larger than this chart.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( M 4 x , y VRT x , y RP 8 centering x , y RP 8 pointing x , y ) = ( α 0 α β ) ( BM 1 x , y MM 1 x , y POL 1 x , y POL 3 x , y ) ,
( LM 1 cent x , y CSF p 4 x , y CSF p 3 x , y TSF p 1 x , y ISP cw Cent x , y ISP cw Point x , y ) = ( α 0 0 η 1 β 0 η 2 η 3 γ ) ( LM 3 x , y POL x , y LM 1 x , y LM 2 x , y M 7 x , y M 9 x , y ) .
( FOA cent x , y TCC point x , y SHG point x , y THG point x , y ) = ( α 0 γ β ) ( LM 5 x , y LM 8 x , y SHG x , y THG x , y ) where     β = ( β 1 β 2 0 0 β 3 β 4 0 0 0 0 β 5 β 6 0 0 β 7 β 8 ) .

Metrics