Abstract

Traditional optical storage technology focuses a laser beam on the surface of a disk using objective lenses. The storage capacity is limited. It entirely depends on the effective disk size. Using colored storage technology to increase the storage capacity is a novel approach. Color is used to store information. After the spectrometer reads the data, the original color is computed and the stored information is read. In this study, a color is used to write colors; optical transmission with a hybrid diffractive/refractive lens produces a transmission spectrum, and then the fiber-optic spectrometer reads and analyzes the color and then decodes the information. Based on a 2.4μm reading spot size and the implementation of tricolor ink, 4.561 Gbytes can be stored. If the tricolor ink dripping and laser size can be reduced to 1.80μm, each disk can store data up to 8.1GB.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X.-L. Zhan, “Study of a new gray-scale coding in holographic storage systems,” Master’s Thesis (National Central University, 2007).
  2. X. Li, J. W. M. Chon, and M. Gu, “Confocal reflection readout thresholds in two-photon-induced optical recording,” Appl. Opt. 47, 4707–4713 (2008).
    [CrossRef] [PubMed]
  3. D. M. Shyu, “Design and simulation analysis for the hybrid diffractive-refractive optical elements,” Master’s Thesis (National Central University, 2002).
  4. S. F. Pond, Inkjet Technology and Product Development Strategies (Torrey Pines, 2000).
  5. J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).
  6. J. J. Yang, “White light micrograting multiplexing for high density data storage,” Opt. Lett. 31, 1304–1306(2006).
    [CrossRef] [PubMed]
  7. G. He, “A new storage technology using color theory,” Master’s Thesis (National Central University, 2007).
  8. W. C. Sweatt, “Describing holographic and optical elements as lenses,” Appl. Opt. 16, 1390–1391 (1977).
    [CrossRef] [PubMed]
  9. P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).
  10. L. Y. Sun, “The study and implementation of a hybrid DOE read/write module used in the color-inkjet high density data storage,” Master’s Thesis (National Formosa University, 2008).
  11. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
    [CrossRef] [PubMed]

2008 (1)

2006 (1)

2003 (1)

P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).

2002 (1)

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

1994 (1)

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

1977 (1)

Aden, J. S.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Barrero, A.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Bohorquez, J. H.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Chon, J. W. M.

Collins, D. M.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Cortijo, R.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Crook, M. D.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Ganán-Calvo, A. M.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Garcia, A.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Gu, M.

Guerrero, I.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

He, G.

G. He, “A new storage technology using color theory,” Master’s Thesis (National Central University, 2007).

Hess, U. E.

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

Hsu, P. Y.

P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).

Hung, T. Y.

P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).

Li, X.

Liu, C. P.

P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).

Loscertales, G.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Marquez, M.

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Pond, S. F.

S. F. Pond, Inkjet Technology and Product Development Strategies (Torrey Pines, 2000).

Shyu, D. M.

D. M. Shyu, “Design and simulation analysis for the hybrid diffractive-refractive optical elements,” Master’s Thesis (National Central University, 2002).

Sun, L. Y.

L. Y. Sun, “The study and implementation of a hybrid DOE read/write module used in the color-inkjet high density data storage,” Master’s Thesis (National Formosa University, 2008).

Sweatt, W. C.

Yang, J. J.

Zhan, X.-L.

X.-L. Zhan, “Study of a new gray-scale coding in holographic storage systems,” Master’s Thesis (National Central University, 2007).

Appl. Opt. (2)

Hewlett-Packard J. (1)

J. S. Aden, J. H. Bohorquez, D. M. Collins, M. D. Crook, A. Garcia, and U. E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard J. 45, 41–45(1994).

NSRRC Commun. Lett. (1)

P. Y. Hsu, T. Y. Hung, and C. P. Liu, “High resolution X ray micromachining used in the scanning chip-size grating,” NSRRC Commun. Lett. , 7–11 (2003).

Opt. Lett. (1)

Science (1)

G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Gaňán-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets,” Science 295, 1695–1698(2002).
[CrossRef] [PubMed]

Other (5)

L. Y. Sun, “The study and implementation of a hybrid DOE read/write module used in the color-inkjet high density data storage,” Master’s Thesis (National Formosa University, 2008).

X.-L. Zhan, “Study of a new gray-scale coding in holographic storage systems,” Master’s Thesis (National Central University, 2007).

G. He, “A new storage technology using color theory,” Master’s Thesis (National Central University, 2007).

D. M. Shyu, “Design and simulation analysis for the hybrid diffractive-refractive optical elements,” Master’s Thesis (National Central University, 2002).

S. F. Pond, Inkjet Technology and Product Development Strategies (Torrey Pines, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of the diffractive/refractive optical lens. The diffractive surface applies on one side of the refractive surface. There are total three aspherical surfaces on the DROE.

Fig. 2
Fig. 2

Schematic diagram of a transmission-detection read and write mechanism used in the inkjet data storage.

Fig. 3
Fig. 3

Micro droplets ejected by the thermal bubble inkjet mechanism. (a) Single droplet. (b) Three droplets form a circle inside a pit hole.

Fig. 4
Fig. 4

Nozzle used in the inkjet head: the microscope view of the nozzle ( 10 × ).

Fig. 5
Fig. 5

(a) Fabricated DROE used in this experiment. (b) Surface profile measured by a noncontact Doppler laser scanning machine (Polytec MSA-500).

Fig. 6
Fig. 6

Laser beam profile measurement from the fabricated DROE.

Fig. 7
Fig. 7

CMY transmission spectrum from a 1.0 mm input light source.

Fig. 8
Fig. 8

CMY transmission spectrum from a DROE input light source.

Fig. 9
Fig. 9

C ink transmission spectrum from a DROE input light source (under different ink concentrations).

Fig. 10
Fig. 10

M ink transmission spectrum from a DROE input light source (under different ink concentrations).

Fig. 11
Fig. 11

Y ink transmission spectrum from a DROE input light source (under different ink concentrations).

Fig. 12
Fig. 12

CMY ink transmission spectrum from a DROE input light source. Here, we use 100% C and 100% M as background and show the contribution from different Y color concentrations.

Fig. 13
Fig. 13

CMY ink transmission spectrum from a DROE input light source (the three separated droplets in the same pit hole).

Fig. 14
Fig. 14

CMY ink transmission spectrum from a DROE input light source (the three overlapped droplets in the same pit hole).

Fig. 15
Fig. 15

Error ratio for decoding cyan.

Fig. 16
Fig. 16

Error ratio for decoding magenta.

Fig. 17
Fig. 17

Error ratio for decoding yellow.

Fig. 18
Fig. 18

Error ratio for decoding key black.

Tables (4)

Tables Icon

Table 1 Design Parameters for Proposed Hybrid Diffractive/Refractive Optical Element

Tables Icon

Table 2 Optical Specification of Proposed Hybrid Diffractive/Refractive Optical Lens

Tables Icon

Table 3 Spin-Coating Process Parameters for the Nozzle Plate a

Tables Icon

Table 4 Sample Calculation of Storage Capacity

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ϕ = ϕ r + ϕ d .
ϕ ( λ 1 ) = [ n r ( λ i 1 ] · [ 1 R r 1 R r ] + λ l C ,
ϕ ( λ s ) = [ n r ( λ s 1 ] · [ 1 R r 1 R r ] + λ s C ,
[ n r ( λ l ) n r ( λ s ) ] · [ 1 R r 1 R r ] = λ s C λ l C ,
ϕ r ( λ c ) = [ n r ( λ c ) 1 ] · [ 1 R r 1 R r ] ϕ d ( λ c ) = λ c C .
ϕ r ( λ c ) · n r ( λ s ) n r ( λ 1 ) n r ( λ c ) 1 = ϕ d ( λ c ) · λ l λ s λ c ϕ r ( λ c ) V r + ϕ d ( λ c ) V d = 0 ,
V r = n r ( λ c ) 1 n r ( λ s ) n r ( λ l ) ,
V d = λ c λ s λ l .
ϕ d ( λ c ) = ( 1 V r V d ) 1 ϕ ( λ c ) ,
ϕ r ( λ c ) = ( 1 V d V r ) 1 ϕ ( λ c ) ,
f d ( λ c ) = ( 1 V r V d ) 1 f ( λ c ) ,
f r ( λ c ) = ( 1 V d V r ) 1 f ( λ c ) .
n = λ × 10 6 + 1.
f d ( λ c ) = ( 1 V r V d ) 1 f ( λ c ) = ( 55.31 3.45 ) × 6 = 102.1913 ( mm ) ,
f r ( λ c ) = ( 1 V d V r ) 1 f ( λ c ) = ( 3.45 55.31 ) × 6 = 6.374 ( mm ) .
Sag ( h ) = h 2 r [ 1 + 1 ( 1 + K ) h 2 r 2 ] + A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 .
X = k Φ ( λ ) x ˜ ( λ ) d λ , Y = k λ λ Φ ( λ ) y ˜ ( λ ) d λ , Z = k λ λ Φ ( λ ) z ˜ ( λ ) d λ ,
Φ ( λ ) = P ( λ ) R ( λ ) ,
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] [ X Y Z ] = [ α ^ β ^ γ ^ ] .
[ A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 ] = n = 1 N ( [ X n Y n Z n ] · [ X n Y n Z n ] T ) 1 · n = 1 N [ α n X n β n X n γ n X n α n Y n β n Y n γ n Y n α n Z n β n Z n γ n Z n ] .
[ A 11 A 12 A 13 A 1 m A 21 A 22 A 23 A 2 m A 31 A 32 A 33 A 3 m A m 1 A m 2 A m 3 A m m ] = n = 1 N ( [ 1 X n Y n Z n X n Y n X n Z n Y n Z n Z n m ] · [ 1 X n Y n Z n X n Y n X n Z n Y n Z n Z n m ] T ) 1 · n = 1 N [ α n β n γ n α n X n β n X n γ n X n α n Y n β n Y n γ n Y n α n Z n β n Z n γ n Z n α n Z n m β n Z n m γ n Z n m ] .

Metrics