Abstract

We present a method for recording on-axis color digital holograms in a single shot. Our system performs parallel phase-shifting interferometry by using the fractional Talbot effect for every chromatic channel simultaneously. A two-dimensional binary amplitude grating is used to generate Talbot periodic phase distributions in the reference beam. The interference patterns corresponding to the three chromatic channels are captured at once at different axial distances. In this scheme, one-shot recording and digital reconstruction allow for real-time measurement. Computer simulations and experimental results confirm the validity of our method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [CrossRef]
  2. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  3. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005).
    [CrossRef] [PubMed]
  4. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45, 2995–3002 (2006).
    [CrossRef] [PubMed]
  5. T. Nomura, S. Murata, E. Nitanai, and T. Numata, “Phase-shifting digital holography with a phase difference between orthogonal polarizations,” Appl. Opt. 45, 4873–4877 (2006).
    [CrossRef] [PubMed]
  6. T. Nomura and M. Imbe, “Single-exposure phase-shifting digital holography using a random-phase reference wave,” Opt. Lett. 35, 2281–2283 (2010).
    [CrossRef] [PubMed]
  7. B. Javidi, S. Yeom, and I. Moon, “Real-time 3D sensing, visualization and recognition of biological microorganisms,” Proc. IEEE 94, 550–567 (2006).
    [CrossRef]
  8. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97–100 (2008).
    [CrossRef]
  9. P. Tankam, Q. Song, M. Karray, J. Li, J. M. Desse, and P. Picart, “Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry,” Opt. Lett. 35, 2055–2057 (2010).
    [CrossRef] [PubMed]
  10. K. Maejima and K. Sato, “One-shot digital holography for real-time recording of moving color 3-D images,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper DMA2.
  11. J. I. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
    [CrossRef]
  12. T. Kakue, T. Tahara, K. Ito, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holography using two phase shifts,” Appl. Opt. 48, H244–H250 (2009).
    [CrossRef] [PubMed]
  13. Ll. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express 17, 12900–12909 (2009).
    [CrossRef] [PubMed]
  14. J. T. Winthrop and C. R. Worthington, “Theory of Fresnel images: I,” J. Opt. Soc. Am. 55, 373–381 (1965).
    [CrossRef]
  15. A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
    [CrossRef]
  16. A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
    [CrossRef]

2010 (3)

2009 (2)

2008 (2)

P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Display Technol. 4, 97–100 (2008).
[CrossRef]

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

2006 (3)

2005 (1)

2002 (2)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

J. I. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Opt. Lett. 27, 1403–1405 (2002).
[CrossRef]

1997 (1)

1965 (1)

Alfieri, D.

Andrés, P.

Araiza-E, M.

Awatsuji, Y.

Brock, N.

Climent, V.

De Nicola, S.

Desse, J. M.

Fajst, A.

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Ferraro, P.

Finizio, A.

Fujii, A.

Grilli, S.

Hayes, J.

Imbe, M.

Ito, K.

Javidi, B.

Jüptner, W. P. O.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Kakue, T.

Karray, M.

Kato, J. I.

Kolodziejczyk, A.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Kubota, T.

Lancis, J.

Li, J.

Maejima, K.

K. Maejima and K. Sato, “One-shot digital holography for real-time recording of moving color 3-D images,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper DMA2.

Makowski, M.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Martínez-León, Ll.

Matoba, O.

Matsumura, T.

Miccio, L.

Millerd, J.

Moon, I.

B. Javidi, S. Yeom, and I. Moon, “Real-time 3D sensing, visualization and recognition of biological microorganisms,” Proc. IEEE 94, 550–567 (2006).
[CrossRef]

Murata, S.

Nishio, K.

Nitanai, E.

Nomura, T.

North-Morris, M.

Novak, M.

Numata, T.

Picart, P.

Sato, K.

K. Maejima and K. Sato, “One-shot digital holography for real-time recording of moving color 3-D images,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper DMA2.

Schnars, U.

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Shimozato, Y.

Siemion, A.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

Song, Q.

Suszek, J.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Sypek, M.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Tahara, T.

Tajahuerce, E.

Tankam, P.

Ura, S.

Winthrop, J. T.

Wojnowski, D.

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

Worthington, C. R.

Wyant, J.

Yamaguchi, I.

Yeom, S.

B. Javidi, S. Yeom, and I. Moon, “Real-time 3D sensing, visualization and recognition of biological microorganisms,” Proc. IEEE 94, 550–567 (2006).
[CrossRef]

Zhang, T.

Appl. Opt. (4)

J. Display Technol. (1)

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[CrossRef]

Opt. Eng. (1)

A. Siemion, M. Sypek, M. Makowski, J. Suszek, A. Siemion, D. Wojnowski, and A. Kolodziejczyk, “One-exposure phase-shifting digital holography based on the self-imaging effect,” Opt. Eng. 49, 055802 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. IEEE (1)

B. Javidi, S. Yeom, and I. Moon, “Real-time 3D sensing, visualization and recognition of biological microorganisms,” Proc. IEEE 94, 550–567 (2006).
[CrossRef]

Proc. SPIE (1)

A. Fajst, M. Sypek, M. Makowski, J. Suszek, and A. Kolodziejczyk, “Self-imaging phase mask used in digital holography with phase-shifting,” Proc. SPIE 7141, 714123 (2008).
[CrossRef]

Other (1)

K. Maejima and K. Sato, “One-shot digital holography for real-time recording of moving color 3-D images,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper DMA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generation of Fresnel images by a 2D amplitude grating under polychromatic illumination. (a) The corresponding Fresnel image for each spectral component presents the same scale, but is located at a different axial distance. (b) The relative phase distribution in the unit cell is the same for each chromatic channel.

Fig. 2
Fig. 2

Setup for the recording of digital color holograms based on the fractional Talbot effect.

Fig. 3
Fig. 3

Simulation of hologram reconstruction showing for each chromatic channel: (a) 2D object, (b) interferogram, (c) interpolated hologram, (d) reconstructed image.

Fig. 4
Fig. 4

Magnified image of the highlighted areas in Fig. 3, corresponding to the G channel, for (a) the interferogram (showing the pixelated structure) and (b) the interpolated hologram.

Fig. 5
Fig. 5

Simulation of hologram reconstruction. (a) Original color object. (b) Reconstructed object. (c) Reconstructed object when considering a random phase at the object plane.

Fig. 6
Fig. 6

Experimental results. Reconstruction of the three chromatic channels. (a) R. (b) G. (c) B. (d) Final reconstructed object.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z ( λ ) = 2 d 2 λ ( q + n m ) = z t ( q + n m ) ,
O ( x , y ) = 1 4 { I ( x , y ; 0 ) I ( x , y ; π ) + i [ 2 I ( x , y ; π / 2 ) I ( x , y ; 0 ) I ( x , y ; π ) ] } .

Metrics