Abstract

In the integral imaging system, the viewing angle is limited by the size and focal length of the elemental lens. In this regard, we propose a new method for the viewing angle enhancement in the InIm. The proposed method employs a refractive index medium between the elemental image plane and the lens array. The viewing angle enhanced InIm display is analyzed based on the imaging terms. The experimental result shows that the viewing angle is doubled.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef] [PubMed]
  3. N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
    [CrossRef]
  4. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
    [CrossRef]
  5. M. McCormick and N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (IEEE, 1993), pp. 237–242.
  6. M. C. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixilated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
    [CrossRef]
  7. S. Shin and B. Javidi, “Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging,” Appl. Opt. 41, 5562–5567 (2002).
    [CrossRef] [PubMed]
  8. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
    [CrossRef] [PubMed]
  9. H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190(2006).
    [CrossRef] [PubMed]
  10. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
    [CrossRef] [PubMed]
  11. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 11, 1346–1356 (2003).
    [CrossRef] [PubMed]
  12. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
    [CrossRef] [PubMed]
  13. J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42, 1996–2002 (2003).
    [CrossRef] [PubMed]
  14. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
    [CrossRef] [PubMed]
  15. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
    [CrossRef] [PubMed]
  16. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
    [CrossRef] [PubMed]
  17. S. Jung, J.-H. Park, H. Choi, and B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520 (2003).
    [CrossRef] [PubMed]

2009 (2)

2007 (2)

2006 (1)

2005 (2)

2003 (4)

2002 (1)

2001 (1)

1997 (1)

1994 (1)

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Aggoun, A.

Arai, J.

Baasantseren, G.

Brewin, M.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Cho, S.-W.

Choi, H.

Davies, N.

M. C. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixilated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
[CrossRef]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
[CrossRef]

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

M. McCormick and N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (IEEE, 1993), pp. 237–242.

Forman, M. C.

Hong, K.

Hoshino, H.

Jang, J.-S.

Javidi, B.

Jung, J.-H.

Jung, S.

Kang, J.-M.

Kim, J.

Kim, N.

Kim, Y.

Kim, Y.-H.

Kung, S.-Y.

Kwon, K.-C.

Lee, B.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Manolache, S.

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

M. C. Forman, N. Davies, and M. McCormick, “Continuous parallax in discrete pixilated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
[CrossRef]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
[CrossRef]

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

M. McCormick and N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (IEEE, 1993), pp. 237–242.

Min, S.-W.

Navarro, H.

Okano, F.

Park, G.

Park, J.-H.

Saavedra, G.

Shin, S.

Yuyama, I.

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. A (2)

Opt. Eng. (1)

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Opt. Express (7)

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15, 18253–18267 (2007).
[CrossRef] [PubMed]

H. Choi, S.-W. Cho, J. Kim, and B. Lee, “A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer,” Opt. Express 14, 5183–5190(2006).
[CrossRef] [PubMed]

H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system using two display devices and a lens array,” Opt. Express 13, 8424–8432 (2005).
[CrossRef] [PubMed]

S. Jung, J.-H. Park, H. Choi, and B. Lee, “Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement,” Opt. Express 11, 1346–1356 (2003).
[CrossRef] [PubMed]

R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martínez-Corral, “Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system,” Opt. Express 15, 16255–16260 (2007).
[CrossRef] [PubMed]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef] [PubMed]

G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17, 14405–14417 (2009).
[CrossRef] [PubMed]

Other (1)

M. McCormick and N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (IEEE, 1993), pp. 237–242.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram: a conventional InIm system.

Fig. 2
Fig. 2

Schematic diagram: method using the refractive index medium.

Fig. 3
Fig. 3

Incident angle u i versus viewing angle θ for the fixed incident point y i .

Fig. 4
Fig. 4

Pixel position y i versus viewing angle θ .

Fig. 5
Fig. 5

Elemental image pickup and display setup of the proposed method.

Fig. 6
Fig. 6

Elemental image.

Fig. 7
Fig. 7

Reconstructed image using the conventional method.

Fig. 8
Fig. 8

Reconstructed image using the proposed method.

Fig. 9
Fig. 9

Magnified part of the elemental image.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

θ = arctan ( P 2 D ) ,
θ = arcsin [ n 2 sin ( ϕ ψ ) ] .
y 4 = y 3 ( R x 1 ) tan ( ϕ ψ ) = R sin ϕ R cos ϕ tan ( ϕ ψ ) .
θ = arcsin ( n 1 n 2 sin u i ) .
θ = arcsin ( n 1 n 2 y i R tan ϕ D 2 + ( y i R tan ϕ ) 2 ) .

Metrics