## Abstract

In the integral imaging system, the viewing angle is limited by the size and focal length of the elemental lens. In this regard, we propose a new method for the viewing angle enhancement in the InIm. The proposed method employs a refractive index medium between the elemental image plane and the lens array. The viewing angle enhanced InIm display is analyzed based on the imaging terms. The experimental result shows that the viewing angle is doubled.

© 2011 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\theta}^{\prime}=\mathrm{arctan}\left(\frac{P}{2D}\right),$$
(2)
$${\theta}^{\prime}=\mathrm{arcsin}[{n}_{2}\mathrm{sin}(\varphi -\psi )]\mathrm{.}$$
(3)
$${y}_{4}={y}_{3}-(R-{x}_{1})\mathrm{tan}(\varphi -\psi )=R\mathrm{sin}\varphi -R\mathrm{cos}\varphi \mathrm{tan}(\varphi -\psi )\mathrm{.}$$
(4)
$${\theta}^{\prime}=\mathrm{arcsin}({n}_{1}{n}_{2}\mathrm{sin}{u}_{i})\mathrm{.}$$
(5)
$${\theta}^{\prime}=\mathrm{arcsin}\left({n}_{1}{n}_{2}\frac{{y}_{i}-R\mathrm{tan}\varphi}{\sqrt{{D}^{2}+({y}_{i}-R\mathrm{tan}\varphi {)}^{2}}}\right)\mathrm{.}$$