Abstract

Angular and polarization multiplexing techniques are utilized in both object and reference arms in the digital holographic microscopy system to improve its resolution. The angular multiplexing provides on-axis and off-axis illumination and reference beams with different carrier frequencies. Polarization multiplexing prohibits the occurrence of interference between low and high object spatial frequencies and reference beams. The proposed system does not require special light sources or filtering masks. Experimental results show that the resolution of the synthesized image exceeds the resolution determined by the numerical aperture of the imaging microscope objective.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Wu, G. Gréhan, S. Meunier-Guttin-Cluzel, L. Chen, and K. Cen, “Sizing of particles smaller than 5μm in digital holographic microscopy,” Opt. Lett. 34, 857–859 (2009).
    [CrossRef] [PubMed]
  2. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33, 744–746 (2008).
    [CrossRef] [PubMed]
  3. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt. 40, 5046–5051 (2001).
    [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  5. Y. Kuznetsova, A. Neumann, and S. R. J. Brueck, “Imaging interferometric microscopy,” J. Opt. Soc. Am. A 25, 811–822(2008).
    [CrossRef]
  6. Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663(2007).
    [CrossRef] [PubMed]
  7. A. Neumann, Y. Kuznetsova, and S. R. Brueck, “Optical resolution below 1/4 using synthetic aperture microscopy and evanescent-wave illumination,” Opt. Express 16, 20477–20483 (2008).
    [CrossRef] [PubMed]
  8. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Super-resolution imaging method using phase-shifting digital lensless Fourier holography,” Opt. Express 17, 15008–15022 (2009).
    [CrossRef] [PubMed]
  9. V. Mico, Z. Zeev, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822–828 (2006).
    [CrossRef] [PubMed]
  10. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture super-resolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162–3170 (2006).
    [CrossRef]
  11. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
    [CrossRef]
  12. C. Yuan, H. Zhai, and Haitao Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33, 2356–2358 (2008).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).
  14. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
    [CrossRef] [PubMed]

2009 (2)

2008 (4)

2007 (2)

Y. Kuznetsova, A. Neumann, and S. R. Brueck, “Imaging interferometric microscopy—approaching the linear systems limits of optical resolution,” Opt. Express 15, 6651–6663(2007).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

2006 (3)

2001 (1)

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
[CrossRef] [PubMed]

Asundi, A. K.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Brueck, S. R.

Brueck, S. R. J.

Cen, K.

Charrière, F.

Chen, L.

Depeursinge, C.

García, J.

García-Martínez, P.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).

Granero, L.

Gréhan, G.

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
[CrossRef] [PubMed]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
[CrossRef] [PubMed]

Kuznetsova, Y.

Liu, Haitao

Magistretti, P. J.

Marquet, P.

Meunier-Guttin-Cluzel, S.

Miao, J.

Mico, V.

Micó, V.

Neumann, A.

Peng, X.

Rappaz, B.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Wu, X.

Xu, L.

Yuan, C.

Zalevsky, Z.

Zeev, Z.

Zhai, H.

Appl. Opt. (2)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209–217 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic Aperture Fourier Holographic Optical Microscopy,” Phys. Rev. Lett. 97, 168102–168105 (2006).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts & Company, 2005).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup (the object is illuminated from two different illumination directions O on and O off . This enables the object of low and high spatial frequency components to be recorded).

Fig. 2
Fig. 2

Fourier spectrum of compound hologram containing two holograms.

Fig. 3
Fig. 3

Spectrum of combination of spectra obtained by on-axis and off-axis illumination. Note that the components in the region filled with wave strips are beyond NA / λ and can be recorded.

Fig. 4
Fig. 4

Compound hologram (a) and its spectrum (b).

Fig. 5
Fig. 5

Intensity distribution of the reconstructed images containing low (a) and high (b) frequencies.

Fig. 6
Fig. 6

Intensity distribution of the synthesized image (a) and its partly magnified image (b).

Fig. 7
Fig. 7

The plots along the white solid lines of Figs. 5a, 6b.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R L ( x , y ) = exp [ i k ( x cos α r L + y cos β r L ) ] J L = R L ( x , y ) J L
R H ( x , y ) = exp [ i k ( x cos α r H + y cos β r H ) ] J H = R H ( x , y ) J H ,
O ( x , y ) = 1 | M | h ( x M x O , y M y O ) [ 1 | M | O O ( M x O M , M y O M ) ] d ( M x O ) d ( M y O ) = 1 | M | h ( x , y ) O g ( x , y ) ,
O L ( x , y ) = [ 1 | M | h ( x , y ) O g ( x , y ) ] J L = O L ( x , y ) J L = O ( x , y ) J L
O H ( x , y ) = { 1 | M | h ( x , y ) [ O g ( x , y ) exp [ i k ( x M cos α o H + y M cos β o H ) ] } J H = O H ( x , y ) J H ,
I C ( x , y ) = R L + R H + O L + O H 2 = ( R L + R H + O L + O H ) , ( R L + R H + O L + O H ) ,
I C ( x , y ) = D ( x , y ) + O L ( x , y ) R L * ( x , y ) + O L * ( x , y ) R L ( x , y ) + O H ( x , y ) R H * ( x , y ) + O H * ( x , y ) R H ( x , y ) ,
FT { I C ( x , y ) } = D ˜ ( f x , f y ) + O ˜ L ( f x cos α r L λ , f y cos β r L λ ) + O ˜ L * ( f x cos α r L λ , f y cos β r L λ ) + O ˜ H ( f x cos α r H λ , f y cos β r H λ ) + O ˜ H * ( f x cos α r H λ , f y cos β r H λ ) ,
O ˜ L ( f x , f y ) = FT { O L ( x , y ) } = 1 | M | O ˜ g ( f x , f y ) P ( f x , f y )
O ˜ H ( f x , f y ) = FT { O H ( x , y ) } = 1 | M | O ˜ g ( f x + cos α o H λ , f y + cos β o H λ ) P ( f x , f y )
FT { I C ( x , y ) } = D ˜ ( f x , f y ) + 1 | M | { O ˜ g ( f x cos α r L λ , f y cos β r L λ ) P ( f x cos α r L λ , f y cos β r L λ ) + O ˜ g * ( f x cos α r L λ , f y cos β r L λ ) P * ( f x cos α r L λ , f y cos β r L λ ) + O ˜ g ( f x cos α r H λ + cos α o H M λ , f y cos β r H λ + cos β o H M λ ) P ( f x cos α r H λ , f y cos β r H λ ) + O ˜ g * ( f x cos α r H λ + cos α o H M λ , f y cos β r H λ + cos β o H M λ ) × P * ( f x cos α r H λ , f y cos β r H λ ) } ,
f ( θ ) = { 1 λ [ b ( θ ) b 2 ( θ ) a 2 + NA 2 ] , if γ τ θ γ + τ NA λ , otherwise ,
f extra ( θ ) = f ( θ ) NA λ

Metrics