D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. Monaghan, D. Kelly, N. Pandey, and B. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).

[CrossRef]
[PubMed]

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

E. Buckley, “Holographic laser projection technology,” Information Display 24, 12 (2008).

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

E. Darakis and J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351–356 (2007).

[CrossRef]
[PubMed]

E. Darakis, T. Naughton, and J. Soraghan, “Compression defects in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579–4586 (2007).

[CrossRef]
[PubMed]

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).

[CrossRef]
[PubMed]

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Info. Foren. Sec. 1, 205–214 (2006).

[CrossRef]

A. Shortt, T. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14, 5129–5134(2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Display Technology 2, 401–410 (2006).

[CrossRef]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).

[CrossRef]
[PubMed]

T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

G. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44, 1216–1225(2005).

[CrossRef]
[PubMed]

T. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233 (2004).

[CrossRef]

T. Naughton, J. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for internet transmission of three-dimensional images,” Appl. Opt. 42, 4758–4764 (2003).

[CrossRef]
[PubMed]

O. A. Skydan, F. Lilley, M. J. Lalor, and D. R. Burton, “Quantization error of ccd cameras and their influence on phase calculation in fringe pattern analysis,” Appl. Opt. 42, 5302–5307 (2003).

[CrossRef]
[PubMed]

T. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132(2002).

[CrossRef]
[PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192(2002).

[CrossRef]
[PubMed]

H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance Medicine 34, 910–914 (1995).

[CrossRef]

J. Schoukens and J. Renneboog, “Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform,” IEEE Trans. Instrum. Meas. 35, 278–286 (1986).

J. Lim and H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).

A. Sripad and D. Snyder, “A necessary and sufficient condition for quantization errors to be uniform and white,” IEEE Trans. Acoust. Speech Signal Process. 25, 442–448 (1977).

[CrossRef]

P. Hariharan and Z. Hegedus, “Reduction of speckle in coherent imaging by spatial frequency sampling,” J. Mod. Opt. 21, 345–356 (1974).

[CrossRef]

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Communication Technology 12, 162–165 (1964).

[CrossRef]

E. Buckley, “Holographic laser projection technology,” Information Display 24, 12 (2008).

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

J. Dainty, “Laser speckle and related phenomena,” in Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, p. 298.

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

T. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132(2002).

[CrossRef]
[PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192(2002).

[CrossRef]
[PubMed]

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Info. Foren. Sec. 1, 205–214 (2006).

[CrossRef]

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Info. Foren. Sec. 1, 205–214 (2006).

[CrossRef]

R. Powers and J. Goodman, “Error rates in computer-generated holographic memories,” Appl. Opt. 14, 1690–1701(1975).

[CrossRef]
[PubMed]

J. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).

[CrossRef]

J. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005).

J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2007).

A. Gotchev and L. Onural, “A survey on sampling and quantization in diffraction and holography,” in Workshop on Spectral Methods and Multirate Signal Processing, SMMSP (2006), pp. 179–190.

H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance Medicine 34, 910–914 (1995).

[CrossRef]

P. Hariharan and Z. Hegedus, “Reduction of speckle in coherent imaging by spatial frequency sampling,” J. Mod. Opt. 21, 345–356 (1974).

[CrossRef]

P. Hariharan and Z. Hegedus, “Reduction of speckle in coherent imaging by spatial frequency sampling,” J. Mod. Opt. 21, 345–356 (1974).

[CrossRef]

N. Pandey and B. Hennelly, “Fixed-point numercial-reconstruction for digital holographic microscopy,” Opt. Lett. 35, 1076–1078 (2010).

[CrossRef]
[PubMed]

D. Monaghan, D. Kelly, N. Pandey, and B. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).

[CrossRef]
[PubMed]

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14, 5129–5134(2006).

[CrossRef]
[PubMed]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Display Technology 2, 401–410 (2006).

[CrossRef]

T. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233 (2004).

[CrossRef]

T. Naughton, J. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for internet transmission of three-dimensional images,” Appl. Opt. 42, 4758–4764 (2003).

[CrossRef]
[PubMed]

T. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132(2002).

[CrossRef]
[PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192(2002).

[CrossRef]
[PubMed]

B. Javidi and J. Horner, “Single spatial light modulator joint transform correlator,” Appl. Opt. 28, 1027–1032(1989).

[CrossRef]
[PubMed]

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. Monaghan, D. Kelly, N. Pandey, and B. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).

[CrossRef]
[PubMed]

M. Kronrod, N. Merzlyakov, and L. Yaroslavskii, “Reconstruction of a hologram with a computer,” in SPIE Milestone Series 144 (SPIE Press, 1998), pp. 645–646.

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

J. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).

[CrossRef]

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

J. Lim and H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Info. Foren. Sec. 1, 205–214 (2006).

[CrossRef]

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

T. Naughton, J. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for internet transmission of three-dimensional images,” Appl. Opt. 42, 4758–4764 (2003).

[CrossRef]
[PubMed]

L. Yaroslavskii and N. Merzlyakov, Methods of Digital Holography (Consultants Bureau, 1980).

M. Kronrod, N. Merzlyakov, and L. Yaroslavskii, “Reconstruction of a hologram with a computer,” in SPIE Milestone Series 144 (SPIE Press, 1998), pp. 645–646.

D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, 1960).

P. Naidu, “Quantization noise in binary holograms,” Opt. Commun. 15, 361–365 (1975).

[CrossRef]

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

E. Darakis, T. Naughton, and J. Soraghan, “Compression defects in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579–4586 (2007).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14, 5129–5134(2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Display Technology 2, 401–410 (2006).

[CrossRef]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

T. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233 (2004).

[CrossRef]

T. Naughton, J. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for internet transmission of three-dimensional images,” Appl. Opt. 42, 4758–4764 (2003).

[CrossRef]
[PubMed]

T. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132(2002).

[CrossRef]
[PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192(2002).

[CrossRef]
[PubMed]

J. Lim and H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).

A. Gotchev and L. Onural, “A survey on sampling and quantization in diffraction and holography,” in Workshop on Spectral Methods and Multirate Signal Processing, SMMSP (2006), pp. 179–190.

A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

D. Psaltis, E. Paek, and S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” in SPIE Milestone Series, 156 (SPIE Press, 1999), pp. 482–488.

N. Pandey and B. Hennelly, “Fixed-point numercial-reconstruction for digital holographic microscopy,” Opt. Lett. 35, 1076–1078 (2010).

[CrossRef]
[PubMed]

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

D. Monaghan, D. Kelly, N. Pandey, and B. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).

[CrossRef]
[PubMed]

H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance Medicine 34, 910–914 (1995).

[CrossRef]

T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).

[CrossRef]

D. Psaltis, E. Paek, and S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” in SPIE Milestone Series, 156 (SPIE Press, 1999), pp. 482–488.

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

J. Schoukens and J. Renneboog, “Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform,” IEEE Trans. Instrum. Meas. 35, 278–286 (1986).

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

J. Schoukens and J. Renneboog, “Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform,” IEEE Trans. Instrum. Meas. 35, 278–286 (1986).

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Communication Technology 12, 162–165 (1964).

[CrossRef]

R. Shiavi, Introduction to Applied Statistical Signal Analysis: Guide to Biomedical and Electrical Engineering Applications (Academic, 2007).

[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14, 5129–5134(2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Display Technology 2, 401–410 (2006).

[CrossRef]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).

[CrossRef]
[PubMed]

A. Sripad and D. Snyder, “A necessary and sufficient condition for quantization errors to be uniform and white,” IEEE Trans. Acoust. Speech Signal Process. 25, 442–448 (1977).

[CrossRef]

A. Sripad and D. Snyder, “A necessary and sufficient condition for quantization errors to be uniform and white,” IEEE Trans. Acoust. Speech Signal Process. 25, 442–448 (1977).

[CrossRef]

D. Psaltis, E. Paek, and S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” in SPIE Milestone Series, 156 (SPIE Press, 1999), pp. 482–488.

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

M. Kronrod, N. Merzlyakov, and L. Yaroslavskii, “Reconstruction of a hologram with a computer,” in SPIE Milestone Series 144 (SPIE Press, 1998), pp. 645–646.

L. Yaroslavskii and N. Merzlyakov, Methods of Digital Holography (Consultants Bureau, 1980).

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).

[CrossRef]
[PubMed]

T. Baumbach, W. Osten, C. von Kopylow, and W. Jüptner, “Remote metrology by comparative digital holography,” Appl. Opt. 45, 925–934 (2006).

[CrossRef]
[PubMed]

T. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, “Compression of digital holograms for three-dimensional object reconstruction and recognition,” Appl. Opt. 41, 4124–4132(2002).

[CrossRef]
[PubMed]

T. Naughton, J. McDonald, and B. Javidi, “Efficient compression of Fresnel fields for internet transmission of three-dimensional images,” Appl. Opt. 42, 4758–4764 (2003).

[CrossRef]
[PubMed]

O. Matoba, T. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192(2002).

[CrossRef]
[PubMed]

G. Mills and I. Yamaguchi, “Effects of quantization in phase-shifting digital holography,” Appl. Opt. 44, 1216–1225(2005).

[CrossRef]
[PubMed]

E. Darakis and J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351–356 (2007).

[CrossRef]
[PubMed]

E. Darakis, T. Naughton, and J. Soraghan, “Compression defects in different reconstructions from phase-shifting digital holographic data,” Appl. Opt. 46, 4579–4586 (2007).

[CrossRef]
[PubMed]

W. Dallas and A. Lohmann, “Phase quantization in holograms-depth effects,” Appl. Opt. 11, 192–194 (1972).

[CrossRef]
[PubMed]

A. W. Lohmann and D. P. Paris, “Binary Fraunhofer holograms, generated by computer,” Appl. Opt. 6, 1739–1748(1967).

[CrossRef]
[PubMed]

F. Wyrowski, “Iterative quantization of digital amplitude holograms,” Appl. Opt. 28, 3864–3870 (1989).

[CrossRef]
[PubMed]

R. Powers and J. Goodman, “Error rates in computer-generated holographic memories,” Appl. Opt. 14, 1690–1701(1975).

[CrossRef]
[PubMed]

B. Javidi and J. Horner, “Single spatial light modulator joint transform correlator,” Appl. Opt. 28, 1027–1032(1989).

[CrossRef]
[PubMed]

M. Seldowitz, J. Allebach, and D. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).

[CrossRef]
[PubMed]

J. Maycock, C. Elhinney, B. Hennelly, T. Naughton, J. McDonald, and B. Javidi, “Three-dimensional scene reconstruction of partially occluded objects using digital holograms,” Appl. Opt. 45, 2975–2985 (2006).

[CrossRef]
[PubMed]

O. A. Skydan, F. Lilley, M. J. Lalor, and D. R. Burton, “Quantization error of ccd cameras and their influence on phase calculation in fringe pattern analysis,” Appl. Opt. 42, 5302–5307 (2003).

[CrossRef]
[PubMed]

T. Crimmins, “Geometric filter for speckle reduction,” Appl. Opt. 24, 1438–1443 (1985).

[CrossRef]
[PubMed]

J. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).

[CrossRef]

A. Sripad and D. Snyder, “A necessary and sufficient condition for quantization errors to be uniform and white,” IEEE Trans. Acoust. Speech Signal Process. 25, 442–448 (1977).

[CrossRef]

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Communication Technology 12, 162–165 (1964).

[CrossRef]

J. Lukas, J. Fridrich, and M. Goljan, “Digital camera identification from sensor pattern noise,” IEEE Trans. Info. Foren. Sec. 1, 205–214 (2006).

[CrossRef]

J. Schoukens and J. Renneboog, “Modeling the noise influence on the Fourier coefficients after a discrete Fourier transform,” IEEE Trans. Instrum. Meas. 35, 278–286 (1986).

E. Buckley, “Holographic laser projection technology,” Information Display 24, 12 (2008).

A. Shortt, T. Naughton, and B. Javidi, “Compression of optically encrypted digital holograms using artificial neural networks,” J. Display Technology 2, 401–410 (2006).

[CrossRef]

H. Jin, H. Wan, Y. Zhang, Y. Li, and P. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” J. Mod. Opt. 55, 2989–3000(2008).

[CrossRef]

P. Hariharan and Z. Hegedus, “Reduction of speckle in coherent imaging by spatial frequency sampling,” J. Mod. Opt. 21, 345–356 (1974).

[CrossRef]

J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145–1150 (1976).

[CrossRef]

J. Maycock, B. Hennelly, J. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” J. Opt. Soc. Am. 24, 1617–1622 (2007).

[CrossRef]

H. Gudbjartsson and S. Patz, “The Rician distribution of noisy MRI data,” Magnetic Resonance Medicine 34, 910–914 (1995).

[CrossRef]

P. Naidu, “Quantization noise in binary holograms,” Opt. Commun. 15, 361–365 (1975).

[CrossRef]

D. Kelly, B. Hennelly, N. Pandey, T. Naughton, W. Rhodes, “Resolution limits in practical digital holographic systems,” Opt. Eng. 48, 095801 (2009).

[CrossRef]

T. Naughton and B. Javidi, “Compression of encrypted three-dimensional objects using digital holography,” Opt. Eng. 43, 2233 (2004).

[CrossRef]

J. Lim and H. Nawab, “Techniques for speckle noise removal,” Opt. Eng. 20, 472–480 (1981).

F. Charriére, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express 15, 8818–8831 (2007).

[CrossRef]
[PubMed]

T. Colomb, J. Kühn, F. Charriere, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300–4306 (2006).

[CrossRef]
[PubMed]

A. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).

[CrossRef]
[PubMed]

A. Shortt, T. Naughton, and B. Javidi, “A companding approach for nonuniform quantization of digital holograms of three-dimensional objects,” Opt. Express 14, 5129–5134(2006).

[CrossRef]
[PubMed]

A. Bourquard, F. Aguet, and M. Unser, “Optical imaging using binary sensors,” Opt. Express 18, 4876–4888 (2010).

[CrossRef]
[PubMed]

N. Pandey and B. Hennelly, “Fixed-point numercial-reconstruction for digital holographic microscopy,” Opt. Lett. 35, 1076–1078 (2010).

[CrossRef]
[PubMed]

P. Marquet, B. Rappaz, P. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).

[CrossRef]
[PubMed]

M. Gross and M. Atlan, “Digital holography with ultimate sensitivity,” Opt. Lett. 32, 909–911 (2007).

[CrossRef]
[PubMed]

D. Monaghan, D. Kelly, N. Pandey, and B. Hennelly, “Twin removal in digital holography using diffuse illumination,” Opt. Lett. 34, 3610–3612 (2009).

[CrossRef]
[PubMed]

D. Middleton, An Introduction to Statistical Communication Theory (McGraw-Hill, 1960).

J. Dainty, “Laser speckle and related phenomena,” in Topics in Applied Physics (Springer-Verlag, 1975), Vol. 9, p. 298.

M. Kronrod, N. Merzlyakov, and L. Yaroslavskii, “Reconstruction of a hologram with a computer,” in SPIE Milestone Series 144 (SPIE Press, 1998), pp. 645–646.

L. Yaroslavskii and N. Merzlyakov, Methods of Digital Holography (Consultants Bureau, 1980).

T. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006).

[CrossRef]

A. Gotchev and L. Onural, “A survey on sampling and quantization in diffraction and holography,” in Workshop on Spectral Methods and Multirate Signal Processing, SMMSP (2006), pp. 179–190.

D. Psaltis, E. Paek, and S. Venkatesh, “Optical image correlation with a binary spatial light modulator,” in SPIE Milestone Series, 156 (SPIE Press, 1999), pp. 482–488.

A. Oppenheim and R. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1999).

R. Shiavi, Introduction to Applied Statistical Signal Analysis: Guide to Biomedical and Electrical Engineering Applications (Academic, 2007).

[PubMed]

J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co, 2007).

J. Goodman, Introduction to Fourier Optics (Roberts & Co., 2005).