Abstract

Application of single-beam reflective laser optical interferometry for oil films and droplets in water detection and characterization is discussed. Oil films can be detected by the appearance of characteristic interference patterns. Analytical expressions describing intensity distribution in these interference patterns allow determination of oil film thickness, size of oil droplets, and distance to the oil film from the observation plane. Results from these analyses indicate that oil spill aging and breakup can be monitored in real time by analyzing time-dependent holographic fringe patterns. Interferometric methods of oil spill detection and characterization can be automated using digital holography with three-dimensional reconstruction of the time-changing oil spill topography. In this effort, the interferometric methods were applied to samples from Chevron oil and British Petroleum MC252 oil obtained during the Deep Water Horizon oil spill in the Gulf of Mexico.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison-Wesley, 1994).
  2. S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
    [CrossRef]
  3. Z. Otremba, “Oil-in-water emulsion as a modifier of water reflectance,” Opt. Appl. 39, 123–128 (2009).
  4. E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
    [CrossRef]
  5. C. Sun, L. Yu, Y. Sun, and Q. Yu, “Scanning white-light interferometer for measurement of the thickness of a transparent oil film on water,” Appl. Opt. 44, 5202–5205, (2005).
    [CrossRef] [PubMed]
  6. A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
    [CrossRef]
  7. J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci. 38, 515–570(2002).
    [CrossRef]
  8. P. Merati, E. Van Meter, and J. Schmitz, “Shear stress measurement by the thin oil film technique,” Technical Report MAE-04-05 (Western Michigan University, 2004).
  9. Y.-C. Huang and U. C. Liang, “Interferometric oil-spill detection system,” Opt. Eng. 40, 740–746 (2001).
    [CrossRef]
  10. K.-N. Liou, “A complimentary theory of light scattering by homogeneous spheres,” Appl. Math. Comput. 3, 331–358(1977).
    [CrossRef]
  11. O. N. Ross and S. G. Bradley, “Model for optical scattering by nonspherical raindrops,” Appl. Opt. 41, 5130–5141 (2002).
    [CrossRef] [PubMed]
  12. Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
    [CrossRef]
  13. N. M. Nussenzveig, “Complex angular momentum theory of rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).
    [CrossRef]
  14. M. Jonasz and G. Fournier, Light Scattering by Particles in Water, Theoretical and Experimental Foundations (Elsevier, 2007).
  15. B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
    [CrossRef] [PubMed]

2010 (1)

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef] [PubMed]

2009 (1)

Z. Otremba, “Oil-in-water emulsion as a modifier of water reflectance,” Opt. Appl. 39, 123–128 (2009).

2008 (1)

E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
[CrossRef]

2005 (1)

2002 (2)

J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci. 38, 515–570(2002).
[CrossRef]

O. N. Ross and S. G. Bradley, “Model for optical scattering by nonspherical raindrops,” Appl. Opt. 41, 5130–5141 (2002).
[CrossRef] [PubMed]

2001 (1)

Y.-C. Huang and U. C. Liang, “Interferometric oil-spill detection system,” Opt. Eng. 40, 740–746 (2001).
[CrossRef]

1999 (1)

S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
[CrossRef]

1996 (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

1995 (1)

Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
[CrossRef]

1979 (1)

1977 (1)

K.-N. Liou, “A complimentary theory of light scattering by homogeneous spheres,” Appl. Math. Comput. 3, 331–358(1977).
[CrossRef]

Bradley, S. G.

Cheng, D. K.

D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison-Wesley, 1994).

Ciulli, E.

E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
[CrossRef]

Draexl, T.

E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
[CrossRef]

Eremin, Ju. A.

Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
[CrossRef]

Fournier, G.

M. Jonasz and G. Fournier, Light Scattering by Particles in Water, Theoretical and Experimental Foundations (Elsevier, 2007).

Gopalan, B.

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef] [PubMed]

Hirai, A.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Huang, Y.-C.

Y.-C. Huang and U. C. Liang, “Interferometric oil-spill detection system,” Opt. Eng. 40, 740–746 (2001).
[CrossRef]

Jonasz, M.

M. Jonasz and G. Fournier, Light Scattering by Particles in Water, Theoretical and Experimental Foundations (Elsevier, 2007).

Katz, J.

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef] [PubMed]

Liang, U. C.

Y.-C. Huang and U. C. Liang, “Interferometric oil-spill detection system,” Opt. Eng. 40, 740–746 (2001).
[CrossRef]

Liou, K.-N.

K.-N. Liou, “A complimentary theory of light scattering by homogeneous spheres,” Appl. Math. Comput. 3, 331–358(1977).
[CrossRef]

Merati, P.

P. Merati, E. Van Meter, and J. Schmitz, “Shear stress measurement by the thin oil film technique,” Technical Report MAE-04-05 (Western Michigan University, 2004).

Mitani, S.

S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
[CrossRef]

Monjushiro, H.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Naughton, J. W.

J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci. 38, 515–570(2002).
[CrossRef]

Nussenzveig, N. M.

Orlov, N. V.

Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
[CrossRef]

Otremba, Z.

Z. Otremba, “Oil-in-water emulsion as a modifier of water reflectance,” Opt. Appl. 39, 123–128 (2009).

Rosenberg, V. I.

Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
[CrossRef]

Ross, O. N.

Sakai, K.

S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
[CrossRef]

Schmitz, J.

P. Merati, E. Van Meter, and J. Schmitz, “Shear stress measurement by the thin oil film technique,” Technical Report MAE-04-05 (Western Michigan University, 2004).

Sheplak, M.

J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci. 38, 515–570(2002).
[CrossRef]

Stadler, K.

E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
[CrossRef]

Sun, C.

Sun, Y.

Takagi, K.

S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
[CrossRef]

Van Meter, E.

P. Merati, E. Van Meter, and J. Schmitz, “Shear stress measurement by the thin oil film technique,” Technical Report MAE-04-05 (Western Michigan University, 2004).

Watarai, H.

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Yu, L.

Yu, Q.

Adv. Tribology (1)

E. Ciulli, T. Draexl, and K. Stadler, “Film thickness analysis for EHL contacts under steady-state conditions by automatic digital image processing,” Adv. Tribology 2008, 325187 (2008).
[CrossRef]

Appl. Math. Comput. (1)

K.-N. Liou, “A complimentary theory of light scattering by homogeneous spheres,” Appl. Math. Comput. 3, 331–358(1977).
[CrossRef]

Appl. Opt. (2)

J. Atmos. Terr. Phys. (1)

Ju. A. Eremin, N. V. Orlov, and V. I. Rosenberg, “Electromagnetic scattering from single electrified raindrops,” J. Atmos. Terr. Phys. 57, 141–149 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

S. Mitani, K. Sakai, and K. Takagi, “Measurement of coherent backscattering phenomena in emulsion” Jpn. J. Appl. Phys. 38, 1398–1402 (1999).
[CrossRef]

Langmuir (1)

A. Hirai, H. Monjushiro, and H. Watarai, “Laser photophoresis of a single droplet in oil in water emulsions,” Langmuir 12, 5570–5575 (1996).
[CrossRef]

Opt. Appl. (1)

Z. Otremba, “Oil-in-water emulsion as a modifier of water reflectance,” Opt. Appl. 39, 123–128 (2009).

Opt. Eng. (1)

Y.-C. Huang and U. C. Liang, “Interferometric oil-spill detection system,” Opt. Eng. 40, 740–746 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

B. Gopalan and J. Katz, “Turbulent shearing of crude oil mixed with dispersants generates long microthreads and microdroplets,” Phys. Rev. Lett. 104, 054501 (2010).
[CrossRef] [PubMed]

Prog. Aerosp. Sci. (1)

J. W. Naughton and M. Sheplak, “Modern developments in shear-stress measurement,” Prog. Aerosp. Sci. 38, 515–570(2002).
[CrossRef]

Other (3)

P. Merati, E. Van Meter, and J. Schmitz, “Shear stress measurement by the thin oil film technique,” Technical Report MAE-04-05 (Western Michigan University, 2004).

D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison-Wesley, 1994).

M. Jonasz and G. Fournier, Light Scattering by Particles in Water, Theoretical and Experimental Foundations (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scheme of oil-on-water film interferometry; distance between oil film and screen 6 m .

Fig. 2
Fig. 2

Typical interference patterns on reflection from the oil-on-water film under near-normal illumination by laser.

Fig. 3
Fig. 3

Scheme of reflection of the wave with amplitude E o from the oil film of thickness h with refractive index n 2 (refractive indices of air and water are n 1 and n 3 , respectively).

Fig. 4
Fig. 4

(a) Density plot and (b) radial dependence of the hologram intensity for parameters a = 0.5 mm , z = 800 cm , wavelength 0.633 μm ).

Fig. 5
Fig. 5

Kinetics of oil-film aging after applying dispersant Corexit 9500 (top left to bottom right); photos were taken at 3 s intervals (diameter of the illuminated oil-film area was about 3 cm ). The last (bottom) picture shows breakup of a big oil island with the formation of droplets.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E r = E f + E b = ( r 12 E 0 + t 12 t 21 r 23 E 0 e i Φ ) e i k l .
Φ = 2 k h [ n 2 2 ( n 1 sin Θ ) 2 ] 1 / 2 .
r 12 = n 1 cos ϑ n 2 cos ϑ t n 1 cos ϑ + n 2 cos ϑ t , t 12 = 1 + r 12 = 2 n 1 cos ϑ n 1 cos ϑ + n 2 cos ϑ t .
cos ϑ t = 1 ( n 1 sin ϑ n 2 ) 2 .
r 12 = n 1 cos ϑ t n 2 cos ϑ n 1 cos ϑ t + n 2 cos ϑ .
t 12 = ( 1 + r 12 ) cos ϑ cos ϑ t .
Φ = tan 1 ( H ( I ) I ) where     H ( I ( x ) ) = F 1 [ F ( 1 π x ) F ( I ( x ) ) ] ,
E s = e i k r i k z S E 0 / ( i k r ) .
r = x 2 + y 2 + z 2 z + x 2 + y 2 2 z .
E = E s + E 0 = E 0 [ 1 + e i k ( x 2 + y 2 ) / 2 z S / ( i k z ) ] .
I = E 2 = I 0 ( 1 + 2 k z Re [ i S e i k ( x 2 + y 2 ) / 2 z ] ) ,
S ( ϑ ) = β 2 ( J 1 ( γ ) / γ + i ρ ξ ( δ ) δ 2 + J 0 ( γ ) ρ 2 ) , ξ ( δ ) = sin δ δ cos δ + i [ cos δ δ sin δ ] , δ = γ 2 + ρ 2 , β = 2 π λ a , γ = 2 β sin ϑ / 2 , ρ = 2 ( n 1 ) β , ρ = 2 ( n 1 ) β ,

Metrics