Abstract

A projection-type integral imaging system is proposed using multiple elemental image layers obtained from a single projector. In a conventional projection-type integral imaging system, only one display mode among real, virtual, and focused modes can be displayed selectively with a single projector. Plural projectors must be used for the generation of multiple elemental image layers. However, in the proposed method, the real and the virtual modes can be displayed simultaneously by generating multiple elemental image layers within the depth of field of a single projector. To embody the proposed method, the system specifications, such as the focal lengths of lenses and the distance between components, must be designed carefully. In this paper, we define and calculate the system factors and present the design role of the system. The feasibility of the proposed method is demonstrated with experimental results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333–378.
    [Crossref]
  3. B.Javidi and F.Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).
  4. S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
    [Crossref]
  5. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [Crossref] [PubMed]
  6. Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “A reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27, 704–706 (2002).
    [Crossref]
  7. J.-S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12, 1077–1083 (2004).
    [Crossref] [PubMed]
  8. M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45, 9132–9139 (2006).
    [Crossref] [PubMed]
  9. H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
    [Crossref]
  10. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
    [Crossref] [PubMed]
  11. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005).
    [Crossref] [PubMed]
  12. J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12, 557–563 (2004).
    [Crossref] [PubMed]
  13. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiple projector,” Opt. Express 12, 1067–1076 (2004).
    [Crossref] [PubMed]
  14. J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
    [Crossref]
  15. H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).
  16. Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334–4343(2006).
    [Crossref] [PubMed]
  17. H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
    [Crossref] [PubMed]
  18. Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
    [Crossref] [PubMed]
  19. D.-H. Shin, B. Lee, and E.-S. Kim, “Parallax-controllable large-depth integral imaging scheme using lenslet array,” Jpn. J. Appl. Phys. 46, 5184–5186 (2007).
    [Crossref]
  20. J.-S. Jang, F. Jin, and B. Javidi, “Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).
    [Crossref] [PubMed]
  21. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45, 1704–1712 (2006).
    [Crossref] [PubMed]
  22. T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
    [Crossref]
  23. Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
    [Crossref] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

2010 (1)

S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
[Crossref]

2009 (4)

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
[Crossref]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (4)

2005 (2)

2004 (4)

2003 (1)

2002 (1)

1908 (1)

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cho, S.-W.

Choi, H.

Dohi, T.

Hata, N.

Hong, J.

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[Crossref]

Hong, K.

Iwahara, M.

Jang, J.-S.

Javidi, B.

Jeong, Y.

Jin, F.

Jung, S.

Kim, E.-S.

D.-H. Shin, B. Lee, and E.-S. Kim, “Parallax-controllable large-depth integral imaging scheme using lenslet array,” Jpn. J. Appl. Phys. 46, 5184–5186 (2007).
[Crossref]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[Crossref] [PubMed]

Kim, J.

Kim, Y.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[Crossref] [PubMed]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[Crossref] [PubMed]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334–4343(2006).
[Crossref] [PubMed]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[Crossref] [PubMed]

Kobayashi, M.

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

Koike, T.

H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005).
[Crossref] [PubMed]

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

Lee, B.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[Crossref] [PubMed]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Parallax-controllable large-depth integral imaging scheme using lenslet array,” Jpn. J. Appl. Phys. 46, 5184–5186 (2007).
[Crossref]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[Crossref] [PubMed]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334–4343(2006).
[Crossref] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[Crossref] [PubMed]

H. Choi, Y. Kim, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Layered-panel integral imaging without the translucent problem,” Opt. Express 13, 5769–5776 (2005).
[Crossref] [PubMed]

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[Crossref]

Y. Jeong, S. Jung, J.-H. Park, and B. Lee, “A reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27, 704–706 (2002).
[Crossref]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333–378.
[Crossref]

Lee, B.-G.

T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
[Crossref]

Liao, H.

Lippmann, G.

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Min, S.-W.

S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
[Crossref]

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333–378.
[Crossref]

Nojiri, Y.

Oh, Y.-S.

Oikawa, M.

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

Okano, F.

Okui, M.

Park, G.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[Crossref] [PubMed]

Park, J.

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

Park, J.-H.

Park, S.-g.

S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
[Crossref]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

Sakai, H.

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

Sakuma, I.

Shin, D.-H.

T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
[Crossref]

D.-H. Shin, B. Lee, and E.-S. Kim, “Parallax-controllable large-depth integral imaging scheme using lenslet array,” Jpn. J. Appl. Phys. 46, 5184–5186 (2007).
[Crossref]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[Crossref] [PubMed]

Song, B.-S.

S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
[Crossref]

Wei, T.-C.

T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Yamasaki, M.

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

Yamashita, T.

Appl. Opt. (8)

J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45, 1704–1712 (2006).
[Crossref] [PubMed]

Y. Kim, J.-H. Park, H. Choi, J. Kim, S.-W. Cho, and B. Lee, “Depth-enhanced three-dimensional integral imaging by use of multilayered display devices,” Appl. Opt. 45, 4334–4343(2006).
[Crossref] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381 (2006).
[Crossref] [PubMed]

M. Okui, J. Arai, Y. Nojiri, and F. Okano, “Optical screen for direct projection of integral imaging,” Appl. Opt. 45, 9132–9139 (2006).
[Crossref] [PubMed]

Y. Kim, H. Choi, J. Kim, S.-W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid crystal layers,” Appl. Opt. 46, 3766–3773 (2007).
[Crossref] [PubMed]

Y. Kim, S.-g. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[Crossref] [PubMed]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[Crossref] [PubMed]

H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44, 305–315 (2005).
[Crossref] [PubMed]

C. R. Acad. Sci. (1)

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Kor. (2)

S.-g. Park, B.-S. Song, and S.-W. Min, “Analysis of image visibility in projection-type integral imaging system without diffuser,” J. Opt. Soc. Kor. 14, 121–126 (2010).
[Crossref]

T.-C. Wei, D.-H. Shin, and B.-G. Lee, “Resolution-enhanced reconstruction of 3D object using depth-reversed elemental images for partially occluded object recognition,” J. Opt. Soc. Kor. 13, 139–145 (2009).
[Crossref]

J. Soc. Inf. Disp. (1)

J. Kim, Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Park, G. Park, S.-W. Min, and B. Lee, “Implementation of polarization-multiplexed tiled projection integral imaging system,” J. Soc. Inf. Disp. 17, 411–418 (2009).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Choi, J.-H. Park, J. Hong, and B. Lee, “Depth-enhanced integral imaging with a stepped lens array or a composite lens array for three-dimensional display,” Jpn. J. Appl. Phys. 43, 5330–5336 (2004).
[Crossref]

D.-H. Shin, B. Lee, and E.-S. Kim, “Parallax-controllable large-depth integral imaging scheme using lenslet array,” Jpn. J. Appl. Phys. 46, 5184–5186 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Other (4)

B. Lee, J.-H. Park, and S.-W. Min, “Three-dimensional display and information processing based on integral imaging,” in Digital Holography and Three-Dimensional Display, T.-C.Poon, ed. (Springer, 2006), pp. 333–378.
[Crossref]

B.Javidi and F.Okano, eds., Three Dimensional Television, Video, and Display Technologies (Springer, 2002).

H. Sakai, M. Yamasaki, T. Koike, M. Oikawa, and M. Kobayashi, “Autostereoscopic display based on enhanced integral photography using overlaid multiple projectors,” SID Symposium Digest 40, 611–614 (2009).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission of a Gaussian beam through a thin lens.

Fig. 2
Fig. 2

Depth of field for a thin convex lens.

Fig. 3
Fig. 3

Scheme of viewing characteristics of focused mode in integral imaging.

Fig. 4
Fig. 4

Depth of field in a single projector: (a) side view and (b) top view considering an SLM in a projector.

Fig. 5
Fig. 5

Schematics of proposed method by using a single projector.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

Experimental setup and results for the measurement of depth of field: (a) schematics and target test patterns; (b) target test pattern results projected on the diffuser; (c) elemental image used in experiment.

Fig. 8
Fig. 8

Experimental results of the proposed method without diffuser: (a) perspective views (top left, top right, bottom left, bottom right); (b) enlarged image of experimental results (dotted rectangle indicates a small part of integrated image resulted from real and virtual mode).

Fig. 9
Fig. 9

Experimental results that verify integration in dual mode. The number “3” ( 14.5 mm ) and letter “D” ( 7 mm ) are integrated exactly at their desired positions in real and virtual mode as the diffuser is swept within the elemental image plane and not the integrated plane.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x near = f x f d 2 ( f / d 1 ) ,
x far = f x f + d 2 ( f / d 1 ) ,
Z dof = y far y near = y f 2 f 2 d 2 ( f / d 1 ) ( y f ) y f 2 f 2 + d 2 ( f / d 1 ) ( y f ) = 2 y d 2 f 2 ( f / d 1 ) ( y f ) f 4 d 2 2 ( f / d 1 ) 2 ( y f ) 2 .
Z dof _ waveoptic = k λ NA 2 ,
Δ z md = 2 g P EL P x ,
Δ z l = 2 g 1 2 P EL ( = P I ) P x = 4 g P EL P x = 2 Δ z md ,
H NI = d BLN d BLS H SLM ,
H FI = d BLF d BLS H SLM ,
Z dof = d BLF d BLN = d BLS H SLM ( H FI H NI ) .

Metrics