Abstract

We propose a novel method for signal storage and encryption, called single-beam multiplexing encoding. The single beam is composed of an inside signal beam and an outside reference beam. The signal beam is amplitude modulated, and the reference beam is phase modulated. The dual modulation is implemented by a spatial light modulator (SLM). Multiplexing holography with different reference beams from different directions, called directional multiplexing, is analyzed in detail. With an SLM based on a twisted nematic liquid crystal display, we demonstrate a single-beam directional multiplexing method using a holographic encoding technique, and the retrieved signals are presented. This encoding system is more stable, miniaturized, and flexible. It should be of great interest for applications in signal encryption as well as for high-capacity data storage.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [Crossref] [PubMed]
  2. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, and M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18, 3264–3273 (2010).
    [Crossref] [PubMed]
  3. M. Salvador, J. Prauzner, S. Köber, K. Meerholz, J. Turek, K. Jeong, and D. Nolte, “Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device,” Opt. Express 17, 11834–11849 (2009).
    [Crossref] [PubMed]
  4. E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
    [Crossref] [PubMed]
  5. S. Wang, S. Huang, X. Zhang, and W. Wu, “Hologram-based watermarking capable of surviving print-scan process,” Appl. Opt. 49, 1170–1178 (2010).
    [Crossref] [PubMed]
  6. J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48, 4858–4865 (2009).
    [Crossref] [PubMed]
  7. L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air–water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
    [Crossref] [PubMed]
  8. A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.
  9. N. Zhu, Y.-T. Wang, J. Liu, J.-H. Xie, and H. Zhang, “Optical image encryption based on interference of polarized light,” Opt. Express 17, 13418–13424 (2009).
    [Crossref] [PubMed]
  10. Y. Zhang and B. Wang, “Optical image encryption based on interference,” Opt. Lett. 33, 2443–2445 (2008).
    [Crossref] [PubMed]
  11. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [Crossref] [PubMed]
  12. C. Denz, T. Dellwig, J. Lembcke, and T. Tschudi, “Parallel optical image addition and subtraction in a dynamic photorefractive memory by phase-code multiplexing,” Opt. Lett. 21, 278–280 (1996).
    [Crossref] [PubMed]
  13. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705(1992).
    [Crossref] [PubMed]
  14. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471–1473 (1992).
    [Crossref] [PubMed]
  15. D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [Crossref] [PubMed]
  16. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [Crossref] [PubMed]
  17. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [Crossref] [PubMed]
  18. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910–914 (2006).
    [Crossref] [PubMed]
  19. H. Choi and J. W. Wu, “Optical properties of holographically generated twisted nematic liquid-crystal gratings,” J. Opt. Soc. Am. B 26, 1–9 (2009).
    [Crossref]
  20. D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
    [Crossref]
  21. Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
    [Crossref]
  22. J. F. Heanue, M. C. Bashaw, A. J. Daiber, R. Snyder, and L. Hesselink, “Digital holographic storage system incorporating thermal fixing in lithium niobate,” Opt. Lett. 21, 1615–1617(1996).
    [Crossref] [PubMed]
  23. D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974).
    [Crossref] [PubMed]
  24. Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007).
    [Crossref]
  25. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
    [Crossref] [PubMed]
  26. Holoeye Photonics AG and Holoeye Corporation, http://www.Holoeye.com/.

2010 (4)

2009 (5)

2008 (2)

2007 (1)

Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007).
[Crossref]

2006 (2)

2005 (1)

1996 (2)

1995 (1)

1993 (1)

1992 (2)

1974 (2)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[Crossref]

D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974).
[Crossref] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Abboud, M.

Atlan, M.

Barbastathis, G.

Bashaw, M. C.

Berreman, D. W.

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[Crossref]

Bun, P.

Chan, Z. Y.

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[Crossref]

Chen, Z. Y.

Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007).
[Crossref]

Choi, H.

Chung, P. S.

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[Crossref]

Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007).
[Crossref]

Coppey-Moisan, M.

Daiber, A. J.

Dellwig, T.

Denz, C.

Desbiolles, P.

Domínguez-Caballero, J. A.

Fujimura, R.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Gross, M.

Heanue, J. F.

Hesselink, L.

Horimai, H.

Huang, S.

Ichimura, S.

Indebetouw, G.

Jeong, K.

Joseph, J.

A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.

Joud, F.

Köber, S.

Kuroda, K.

Lam, E. Y.

Lembcke, J.

Levene, M.

Leyva, V.

Li, J.

Liu, J.

Liu, S.

Loomis, N.

Meerholz, K.

Mok, F. H.

Mosk, A. P.

Nelleri, A.

A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.

Nolte, D.

Pauliat, G.

Phillips, W.

Poon, T.-C.

Prauzner, J.

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Ren, X.

Roosen, G.

Salvador, M.

Shimura, T.

Singh, K.

A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.

Snyder, R.

Staebler, D. L.

Tan, X.

Tessier, G.

Tian, L.

Tschudi, T.

Turek, J.

van Putten, E. G.

Vellekoop, I. M.

Vo, H.

Wang, B.

Wang, S.

Wang, Y.-T.

Warnasooriya, N.

Wu, J. W.

Wu, W.

Xie, J.-H.

Yariv, A.

Zhang, H.

Zhang, X.

Zhang, Y.

Zhu, N.

Appl. Opt. (9)

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt. 48, H113–H119 (2009).
[Crossref] [PubMed]

S. Wang, S. Huang, X. Zhang, and W. Wu, “Hologram-based watermarking capable of surviving print-scan process,” Appl. Opt. 49, 1170–1178 (2010).
[Crossref] [PubMed]

J. Li, X. Zhang, S. Liu, and X. Ren, “Adaptive watermarking scheme using a gray-level computer generated hologram,” Appl. Opt. 48, 4858–4865 (2009).
[Crossref] [PubMed]

L. Tian, N. Loomis, J. A. Domínguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air–water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010).
[Crossref] [PubMed]

C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Potentialities and limitations of hologram multiplexing by using the phase-encoding technique,” Appl. Opt. 31, 5700–5705(1992).
[Crossref] [PubMed]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
[Crossref] [PubMed]

H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910–914 (2006).
[Crossref] [PubMed]

D. L. Staebler and W. Phillips, “Fe-doped LiNbO3 for read-write applications,” Appl. Opt. 13, 788–794 (1974).
[Crossref] [PubMed]

E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. W. Berreman, “Dynamics of liquid-crystal twist cells,” Appl. Phys. Lett. 25, 12–15 (1974).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (7)

Proc. SPIE (2)

Z. Y. Chan and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M(2010).
[Crossref]

Z. Y. ChenP. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE , 6775, 67750S (2007).
[Crossref]

Other (2)

Holoeye Photonics AG and Holoeye Corporation, http://www.Holoeye.com/.

A. Nelleri, J. Joseph, and K. Singh, “Digital holographic encryption,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2009), paper DTuB1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of dual modulation of the SLM.

Fig. 2
Fig. 2

Optical setup for data encoding in single-beam holography.

Fig. 3
Fig. 3

Optical setup for signal decoding in single-beam holography.

Fig. 4
Fig. 4

Showing results of the computer simulation of directional multiplexing.

Fig. 5
Fig. 5

(a) Phase modulation and (b) intensity variation of LCR-2500.

Fig. 6
Fig. 6

Intensity modulation of LCR-2500.

Fig. 7
Fig. 7

Schematic diagram for dual modulation of LCR-2500.

Fig. 8
Fig. 8

Optical configuration for signal encoding and retrieving of single-beam multiplexing holography.

Fig. 9
Fig. 9

Experimental demonstration for directional multiplexing.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = arcsin λ d ,
ρ ( θ ) = f 2 tan θ h ,
D 1 sin α 1 = λ , tan α 1 = f h tan θ 1 , D 2 sin α 2 = λ , tan α 2 = f h tan θ 2 ,
sin α cos ϕ = sin α 1 cos Δ φ λ D 2 , sin α sin ϕ = sin α 1 sin Δ φ ,
Δ = f tan α .
Δ = 2 f 2 λ h d cos ( Δ φ 2 ) .

Metrics