Abstract

We demonstrate a wavelength-locked laser source that rapidly steps through six wavelengths distributed across a 1572.335nm carbon dioxide (CO2) absorption line to allow precise measurements of atmospheric CO2 absorption. A distributed-feedback laser diode (DFB-LD) was frequency-locked to the CO2 line center by using a frequency modulation technique, limiting its peak-to-peak frequency drift to 0.3MHz at 0.8s averaging time over 72 hours. Four online DFB-LDs were then offset locked to this laser using phase-locked loops, retaining virtually the same absolute frequency stability. These online and two offline DFB-LDs were subsequently amplitude switched and combined. This produced a precise wavelength-stepped laser pulse train, to be amplified for CO2 measurements.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
    [CrossRef]
  2. R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
    [CrossRef]
  3. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
    [CrossRef]
  4. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
    [CrossRef]
  5. M. Marquis and P. Tans, “Carbon crucible,” Science 320, 460–461 (2008).
    [CrossRef] [PubMed]
  6. Atmospheric Infrared Sounder, http://airs.jpl.nasa.gov.
  7. Japan Aerospace Exploration Agency, http://www.jaxa.jp/projects/sat/gosat/index_e.html.
  8. Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).
  9. J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.
  10. J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
    [CrossRef]
  11. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide,” Appl. Opt. 43, 914–927 (2004).
    [CrossRef] [PubMed]
  12. S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
    [CrossRef]
  13. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
    [CrossRef]
  14. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]
  15. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, G. Huang, and W. R. C. Rowley, “Absolute frequency measurement of a 1.5 mm acetylene standard by use of a combined frequency chain and femtosecond comb,” Opt. Lett. 29, 566–568 (2004).
    [CrossRef] [PubMed]
  16. S. L. Gilbert and W. C. Swann, “Standard reference materials: carbon monoxide absorption references for 1560 nm to 1630 nm wavelength calibration—SRM 2514 (C12O16) and SRM 2515 (C13O16),” NIST Special Publication 260-146 (National Institute of Standards and Technology, 2002).
  17. W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
    [CrossRef]
  18. A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, and M. M. Fejer, “Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz,” Appl. Opt. 37, 6410–6414 (1998).
    [CrossRef]
  19. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
    [CrossRef]
  21. A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
    [CrossRef]
  22. S. Schilt and L. Thévenaz, “Experimental method based on wavelength-modulation spectroscopy for the characterization of semiconductor lasers under direct modulation,” Appl. Opt. 43, 4446–4453 (2004).
    [CrossRef] [PubMed]
  23. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326(1985).
    [CrossRef]
  24. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [CrossRef]
  25. F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
    [CrossRef]
  26. M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
    [PubMed]
  27. G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008).
    [CrossRef] [PubMed]
  28. L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
    [CrossRef]
  29. I. A. Ramsay and J. J. Degnan, “A ray analysis of optical resonators formed by two spherical mirrors,” Appl. Opt. 9, 385–398 (1970).
    [CrossRef] [PubMed]
  30. J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
    [CrossRef]
  31. R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
    [CrossRef]
  32. S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
    [CrossRef] [PubMed]
  33. A. Stummer, ““Chromamatic” laser tuning,” http://www.physics.utoronto.ca/~astummer/pub/mirror/Projects/Archives/Laser%20Tuning/Laser%20Tuning.html.
  34. R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28, 82–83 (1992).
    [CrossRef]
  35. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
    [CrossRef]
  36. F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93 (1988).
    [CrossRef]
  37. A. Malinowski, K. T. Vu, K. K. Chen, J. Nilsson, Y. Jeong, S. Alam, D. Lin, and D. J. Richardson, “High power pulsed fiber MOPA system incorporating electro-optic modulator based adaptive pulse shaping,” Opt. Express 17, 20927–20937(2009).
    [CrossRef] [PubMed]
  38. D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
    [CrossRef]
  39. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
    [CrossRef] [PubMed]
  40. P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.
  41. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [CrossRef] [PubMed]
  42. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
    [CrossRef] [PubMed]
  43. K. Knabe, S. Wu, J. Lim, K. A. Tillman, P. S. Light, F. Couny, N. Wheeler, R. Thapa, A. M. Jones, J. W. Nicholson, B. R. Washburn, F. Benabid, and K. L. Corwin, “10 kHz accuracy of an optical frequency reference based on C2H212-filled large-core kagome photonic crystal fibers,” Opt. Express 17, 16017–16026 (2009).
    [CrossRef] [PubMed]
  44. G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).
  45. J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.
  46. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

2010 (2)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

2009 (2)

2008 (6)

G. J. Koch, J. Y. Beyon, F. Gibert, B. W. Barnes, S. Ismail, M. Petros, P. J. Petzar, J. Yu, E. A. Modlin, K. J. Davis, and U. N. Singh, “Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements,” Appl. Opt. 47, 944–956 (2008).
[CrossRef] [PubMed]

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[CrossRef] [PubMed]

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

M. Marquis and P. Tans, “Carbon crucible,” Science 320, 460–461 (2008).
[CrossRef] [PubMed]

2007 (1)

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

2006 (3)

J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[CrossRef]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31, 3574–3576 (2006).
[CrossRef] [PubMed]

2005 (2)

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

2001 (2)

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

2000 (1)

1999 (2)

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

1998 (1)

1994 (1)

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

1993 (1)

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

1992 (1)

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28, 82–83 (1992).
[CrossRef]

1988 (1)

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

1985 (2)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

1980 (1)

1970 (1)

Abo, M.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Abshire, J.

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

Abshire, J. B.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Affolderbach, C.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[CrossRef] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

Alam, S.

Alkhaled, A.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Allan, G.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Allan, G. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

Allard, M.

J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[CrossRef]

Amediek, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

Arbore, M. A.

Arie, A.

Barkov, N. I.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Barnes, B. W.

Barnola, J.-M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Barwood, G. P.

Basile, I.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Becker, P. C.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Benabid, F.

Bender, M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Bertinetto, F.

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

Beyon, J. Y.

Biraud, S.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

Bjorklund, G. C.

Boesch, H.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Bruner, A.

Burris, J. F.

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

Chang, D. H.

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

Chappellaz, J.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Chen, K. K.

Clairon, A.

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

Cliche, J.-F.

J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[CrossRef]

Collatz, G. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

Connor, B. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Corwin, K. L.

Couny, F.

Crisp, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Davis, K. J.

Davis, M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

DeCola, P. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Degnan, J. J.

Delaygue, G.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Delmotte, M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Denning, A. S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

Doney, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Edwards, C. S.

Ehret, G.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

Engelen, R. J.

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Fejer, M. M.

Fix, A.

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Fung, I. Y.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Gambini, P.

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

Gehrtz, M.

Gibert, F.

Gilbert, S. L.

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
[CrossRef]

S. L. Gilbert and W. C. Swann, “Standard reference materials: carbon monoxide absorption references for 1560 nm to 1630 nm wavelength calibration—SRM 2514 (C12O16) and SRM 2515 (C13O16),” NIST Special Publication 260-146 (National Institute of Standards and Technology, 2002).

Gill, P.

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Gurney, K. R.

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

Hall, J. L.

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Hasselbrack, W.

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

Hasselbrack, W. E.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

Hilico, L.

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Huang, G.

Iga, K.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

Ismail, S.

Jacob, D. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Jeong, Y.

Jones, A. M.

Jones, D. B. A.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Jouzel, J.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Kauffmann-Werner, D.

Kawa, S. R.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide,” Appl. Opt. 43, 914–927 (2004).
[CrossRef] [PubMed]

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Kiryuschev, I.

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

Koch, G. J.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Kotlyakov, V. M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Koyama, F.

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

Krainak, M. A.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

Lano, R.

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

Law, R. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Lea, S. N.

Legrand, M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Levin, J.

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

Light, P. S.

Lim, J.

Lin, D.

Lipenkov, V. Y.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Lorius, C.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Mahal, V.

Malinowski, A.

Mao, J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide,” Appl. Opt. 43, 914–927 (2004).
[CrossRef] [PubMed]

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Margolis, H. S.

Marquis, M.

M. Marquis and P. Tans, “Carbon crucible,” Science 320, 460–461 (2008).
[CrossRef] [PubMed]

Matthey, R.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[CrossRef] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

Menzies, R. T.

M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
[PubMed]

Meras, P.

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

Michalak, A. M.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Mileti, G.

S. Schilt, R. Matthey, D. Kauffmann-Werner, C. Affolderbach, G. Mileti, and L. Thévenaz, “Laser offset-frequency locking up to 20 GHz using a low-frequency electrical filter technique,” Appl. Opt. 47, 4336–4344 (2008).
[CrossRef] [PubMed]

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

Miller, C. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Modlin, E. A.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Nagai, T.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Nagasawa, C.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Nakazato, M.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Nez, F.

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

Nicholls, M. E.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

O’Brien, D.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

O’Brien, D. M.

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Olsen, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Olsson, N. A.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Pawson, S.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Pépin, L.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Petit, J. R.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Petros, M.

Petzar, P. J.

Phillips, M. W.

M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
[PubMed]

Poberezhskiy, I. Y.

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

Puleo, M.

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

Ramos, R. T.

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28, 82–83 (1992).
[CrossRef]

Ramsay, I. A.

Randerson, J. T.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Ranson, J.

M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
[PubMed]

Raynaud, D.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Rayner, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Rayner, P. J.

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

Richardson, D. J.

Riris, H.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

Ritz, C.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Rowley, W. R. C.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

Sakaizawa, D.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Salawitch, R. J.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Saltzman, E.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Sander, S. P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Schilt, S.

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Seeds, A. J.

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28, 82–83 (1992).
[CrossRef]

Sen, B.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Shibata, Y.

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Simpson, J. R.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Singh, U. N.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Spiers, G. D.

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
[PubMed]

Stephen, M.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Stephens, G. L.

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

Stievenard, M.

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Stummer, A.

A. Stummer, ““Chromamatic” laser tuning,” http://www.physics.utoronto.ca/~astummer/pub/mirror/Projects/Archives/Laser%20Tuning/Laser%20Tuning.html.

Sun, X.

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

Suntharalingam, P.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Swann, W. C.

W. C. Swann and S. L. Gilbert, “Line centers, pressure shift, and pressure broadening of 1530–1560 nm hydrogen cyanide wavelength calibration lines,” J. Opt. Soc. Am. B 22, 1749–1756 (2005).
[CrossRef]

W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
[CrossRef]

S. L. Gilbert and W. C. Swann, “Standard reference materials: carbon monoxide absorption references for 1560 nm to 1630 nm wavelength calibration—SRM 2514 (C12O16) and SRM 2515 (C13O16),” NIST Special Publication 260-146 (National Institute of Standards and Technology, 2002).

Tans, P.

M. Marquis and P. Tans, “Carbon crucible,” Science 320, 460–461 (2008).
[CrossRef] [PubMed]

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Têtu, M.

J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[CrossRef]

Thapa, R.

Thévenaz, L.

Tillman, K. A.

Toon, G. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Touahri, D.

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Vu, K. T.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

Washburn, B. R.

Weaver, C. J.

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

Weidemüller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Wennberg, P. O.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Werner, D.

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Wheeler, N.

Whittaker, E. A.

Wilson, E.

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

Wofsy, S. C.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Wong, N. C.

Wu, S.

Yu, J.

Yung, Y. L.

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

Zielonkowski, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (4)

R. Matthey, S. Schilt, D. Werner, C. Affolderbach, L. Thévenaz, and G. Mileti, “Diode laser frequency stabilisation for water-vapour differential absorption sensing,” Appl. Phys. B 85, 477–485 (2006).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105(1983).
[CrossRef]

A. Amediek, A. Fix, M. Wirth, and G. Ehret, “Development of an OPO system at 1.57 μm for integrated path DIAL measurement of atmospheric carbon dioxide,” Appl. Phys. B 92, 295–302 (2008).
[CrossRef]

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
[CrossRef]

Electron. Lett. (1)

R. T. Ramos and A. J. Seeds, “Fast heterodyne optical phase-lock loop using double quantum well laser diodes,” Electron. Lett. 28, 82–83 (1992).
[CrossRef]

Geophys. Res. Lett. (1)

P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001).
[CrossRef]

J. Geophys. Res. (2)

C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007).
[CrossRef]

R. J. Engelen, A. S. Denning, K. R. Gurney, and G. L. Stephens, “Global observations of the carbon budget: 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras,” J. Geophys. Res. 106, 20055–20068(2001).
[CrossRef]

J. Lightwave Technol. (1)

F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave Technol. 6, 87–93 (1988).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, and M. Nakazato, “Measurement of pressure-induced broadening and shift coefficients of carbon dioxide absorption lines around 1.6 μm for using differential absorption lidar,” Jpn. J. Appl. Phys. 47, 325–328 (2008).
[CrossRef]

Nature (3)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434, 488–491 (2005).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M.Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pépin, C. Ritz, E. Saltzman, and M. Stievenard, “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature 399, 429–436(1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (2)

J.-F. Cliche, M. Allard, and M. Têtu, “High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise,” Proc. SPIE 6216, 62160C (2006).
[CrossRef]

F. Bertinetto, P. Gambini, R. Lano, and M. Puleo, “Frequency stabilization of DFB laser diodes to the P(3) line of acetylene at 1.52688 μm by external phase modulation,” Proc. SPIE 1837, 154–163 (1993).
[CrossRef]

Rev. Sci. Instrum. (2)

L. Hilico, D. Touahri, F. Nez, and A. Clairon, “Narrow-line, low-amplitude noise semiconductor laser oscillator in the 780 nm range,” Rev. Sci. Instrum. 65, 3628–3633(1994).
[CrossRef]

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70, 242–243(1999).
[CrossRef]

Science (1)

M. Marquis and P. Tans, “Carbon crucible,” Science 320, 460–461 (2008).
[CrossRef] [PubMed]

Tellus, Ser. B, Chem. Phys. Meteorol. (2)

J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud, “Pulsed airborne lidar measurements of atmospheric CO2 column absorption,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 770–783 (2010).
[CrossRef]

S. R. Kawa, J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver, “Simulation studies for a space-based CO2 lidar mission,” Tellus, Ser. B, Chem. Phys. Meteorol. 62, 759–769(2010).
[CrossRef]

Other (11)

Atmospheric Infrared Sounder, http://airs.jpl.nasa.gov.

Japan Aerospace Exploration Agency, http://www.jaxa.jp/projects/sat/gosat/index_e.html.

Space Studies Board, National Research Council, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond (National Academies, 2007).

J. B. Abshire, H. Riris, G. Allan, X. Sun, S. R. Kawa, J. Mao, M. Stephen, E. Wilson, and M. A. Krainak, “Laser sounder for global measurement of CO2 concentrations in the troposphere from space,” in Laser Applications to Chemical, Security and Environmental Analysis of OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper LMA4.

A. Stummer, ““Chromamatic” laser tuning,” http://www.physics.utoronto.ca/~astummer/pub/mirror/Projects/Archives/Laser%20Tuning/Laser%20Tuning.html.

S. L. Gilbert and W. C. Swann, “Standard reference materials: carbon monoxide absorption references for 1560 nm to 1630 nm wavelength calibration—SRM 2514 (C12O16) and SRM 2515 (C13O16),” NIST Special Publication 260-146 (National Institute of Standards and Technology, 2002).

M. W. Phillips, J. Ranson, G. D. Spiers, and R. T. Menzies, “Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2004), paper CMDD2.
[PubMed]

P. Meras Jr., I. Y. Poberezhskiy, D. H. Chang, J. Levin, and G. D. Spiers, “Laser frequency stabilization for coherent lidar applications using novel all-fiber gas reference cell fabrication technique,” presented at the 24th International Laser Radar Conference, Boulder, Colorado, 23 June 2008.

G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, and M. A. Krainak, “Laser sounder for active remote sensing measurements of CO2 concentrations,” in 2008 IEEE Aerospace Conference (IEEE, 2008).

J. Abshire, H. Riris, W. Hasselbrack, G. R. Allan, C. J. Weaver, and J. Mao, “Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, of OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFU2.

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Basic design concept for our CO 2 sounder transmitter. The laser seeder (left) is rapidly pulsed and switched among the six measurement laser frequencies to provide the wavelength-stepped pulse train (lower right) that is subsequently amplified by EDFAs. The amplified pulse-train is used to repeatedly measure at six points across the 1572.335 nm CO 2 absorption line (upper right).

Fig. 2
Fig. 2

Absolute frequency locking setup for the master DFB-LD. DET, PIN detector; LPF, low-pass filter; PM, phase modulator; PS, phase shifter; SG, signal generator.

Fig. 3
Fig. 3

Error signal measured in the absolute frequency locking setup shown in Fig. 2. The depression at the positive and negative peaks of the error signal is attributed to the mixer saturation.

Fig. 4
Fig. 4

Frequency tuning response of the DFB-LDs as a function of the injection current modulation frequency.

Fig. 5
Fig. 5

Optical frequency drifts of a DFB-LD measured from the beatnote between two equivalent and independent master lasers. The frequency drifts of each one of the two lasers locked to the 1572.335 nm CO 2 line were obtained by assuming equal and independent frequency noises from both. The unlocked frequency drifts were obtained by unlocking one of the two lasers.

Fig. 6
Fig. 6

DFB-LD optical frequency noise spectra measured for: an unlocked laser; a master laser absolutely locked to a CO 2 cell using the setup shown in Fig. 2; and a slave laser offset locked to the master laser using the setup shown in Fig. 8.

Fig. 7
Fig. 7

Allan deviation of the two absolutely locked master DFB-LDs.

Fig. 8
Fig. 8

Offset frequency locking setup for the slave DFB-LDs: ROSA, receiver optical subassembly; LIA, limiting amplifier; DDS, direct digital synthesizer; PSD, phase sensitive detector.

Fig. 9
Fig. 9

Optical frequency difference between a slave DFB-LD and a maser DFB-LD when the slave was locked to the master with 2.014 GHz frequency offset using a phase-locked loop shown in Fig. 8.

Fig. 10
Fig. 10

Setup to produce the measurement pulse train from the six online and offline DFB-LDs. DET, detector. The fiber combiner was built from cascaded 3 dB SM PM fiber couplers.

Fig. 11
Fig. 11

Optical spectrum of the seeder output measured by a scanning FP interferometer. The laser seeder stepped through the six fixed laser frequencies across the 1572.335 nm CO 2 line centered at 0 Hz offset in this plot.

Fig. 12
Fig. 12

Combined seeder pulse train before and after being amplified by an EDFA preamplifier.

Metrics