Abstract

The resolution dependence of spatial-spectral volume holographic imaging systems on angular and spectral bandwidth of nonuniform gratings is investigated. Modeling techniques include a combination of the approximate coupled-wave analysis and the transfer-matrix method for holograms recorded in absorptive media. The effective thickness of the holograms is used as an estimator of the resolution of the imaging systems. The methodology, which assists in the design and optimization of volume holographic simulation results based on our approach, are confirmed with experiments and show proof of consistency and usefulness of the proposed models.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dual-grating confocal-rainbow volume holographic imaging system designs for high depth resolution

Erich E. de Leon, Jonathan W. Brownlee, Paul Gelsinger-Austin, and Raymond K. Kostuk
Appl. Opt. 51(29) 6952-6961 (2012)

Confocal-rainbow volume holographic imaging system

Jose M. Castro, Paul J. Gelsinger-Austin, Jennifer K. Barton, and Raymond K. Kostuk
Appl. Opt. 50(10) 1382-1388 (2011)

Broadband volume holographic imaging

Arnab Sinha and George Barbastathis
Appl. Opt. 43(27) 5214-5221 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription