L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary 3D aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).

[CrossRef]

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

Y. Xu, “Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories,” J. Comput. Phys. 139, 137–165 (1998).

[CrossRef]

Ø. Farsund and B. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108–130 (1996).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn-coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary 3D aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, M. Kreysing, K. Chalut, and J. Guck, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary 3D aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, M. Kreysing, K. Chalut, and J. Guck, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

Ø. Farsund and B. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108–130 (1996).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

Ø. Farsund and B. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108–130 (1996).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd ed. (Cambridge University, 1996).

Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

J. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn-coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn-coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary 3D aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Boyde, M. Kreysing, K. Chalut, and J. Guck, “Physical insight into light scattering by photoreceptor cell nuclei,” Opt. Lett. 35, 2639–2641 (2010).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).

[CrossRef]

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

M. Melamed, T. Lindmo, and M. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, 1990).

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

M. Melamed, T. Lindmo, and M. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, 1990).

M. Melamed, T. Lindmo, and M. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, 1990).

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd ed. (Cambridge University, 1996).

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd ed. (Cambridge University, 1996).

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd ed. (Cambridge University, 1996).

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

Y. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

G. Gouesbet, G. Gréhan, and B. Maheu, “Computations of the gn-coefficients in the generalized Lorenz-Mie theory using three different methods,” Appl. Opt. 27, 4874–4883 (1988).

[CrossRef]

A. Doicu and T. Wriedt, “Computation of the beam-shape coefficients in the generalized Lorenz-Mie theory by using the translational addition theorem for spherical vector wave functions,” Appl. Opt. 36, 2971–2978 (1997).

[CrossRef]

Y. Xu, “Electromagnetic scattering by an aggregate of spheres,” Appl. Opt. 34, 4573–4588 (1995).

[CrossRef]

A. Jonáš and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29, 4813–4851 (2008).

[CrossRef]

J. P. Barton and D. R. Alexander, “Fifth-order corrected electromagnetic field components for a fundamental Gaussian beam,” J. Appl. Phys. 66, 2800–2802 (1989).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

Y. Xu, “Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories,” J. Comput. Phys. 139, 137–165 (1998).

[CrossRef]

J. Lock and G. Gouesbet, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).

[CrossRef]

G. Gouesbet and J. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses,” J. Opt. Soc. Am. A 26, 1814–1826 (2009).

[CrossRef]

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).

[CrossRef]

L. Boyde, K. Chalut, and J. Guck, “Near- and far-field scattering from arbitrary 3D aggregates of coated spheres using parallel computing,” Phys. Rev. E 83, 026701 (2011).

[CrossRef]

L. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. Crawford, and M. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).

[CrossRef]

J. Guck, R. Ananthakrishnan, T. Moon, C. Cunningham, and J. Käs, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).

[CrossRef]

Ø. Farsund and B. Felderhof, “Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field,” Physica A 227, 108–130 (1996).

[CrossRef]

O. Cruzan, “Translational addition theorems for spherical vector wave functions,” Q. Appl. Math. 20, 33–40 (1962).

M. Melamed, T. Lindmo, and M. Mendelsohn, Flow Cytometry and Sorting, 2nd ed. (Wiley, 1990).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, 1st ed. (Wiley, 1983).

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing, 2nd ed. (Cambridge University, 1996).