Abstract

In a transmittance spectrum of air etalon composed of ITO-coated glass plates, stronger spectral modulation is observed by using a focused white-light incident beam compared with that by using a conventionally collimated beam. The light source is a single commercial light-emitting diode. An angular integrated multiple-beam Fabry–Perot model is proposed that is well fitted to the measured transmittance spectra. The gap thickness of the air etalon is sensitively retrieved and mapped at a lateral surface resolution of about 1mm, and the unparallelness of the etalon angled as low as several microradians is thereafter estimated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
    [CrossRef]
  2. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
    [PubMed]
  3. H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
    [CrossRef]
  4. J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
    [CrossRef]
  5. J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
    [CrossRef]
  6. H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
    [CrossRef]
  7. D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
    [CrossRef]
  8. M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
    [CrossRef]
  9. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
    [CrossRef]
  10. K. H. Yang, “Measurements of empty cell gap for liquid-crystal displays using interferometric methods,” J. Appl. Phys. 64, 4780–4781 (1988).
    [CrossRef]
  11. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  12. A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
    [CrossRef]

2010 (1)

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

2009 (4)

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

2005 (1)

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

2003 (1)

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

2002 (2)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
[PubMed]

2000 (1)

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

1988 (1)

K. H. Yang, “Measurements of empty cell gap for liquid-crystal displays using interferometric methods,” J. Appl. Phys. 64, 4780–4781 (1988).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bunnin, T. J.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

Bunning, T. J.

Chandra, S.

Colegrove, J.

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Crawford, G. P.

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Dai, H. T.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Escuti, M. J.

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Fiske, T. G.

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Gan, F. X.

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

Gao, B.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

Gao, H. Y.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

Getty, A.

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

Kossyrev, P.

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Liang, J. H.

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Liu, J. H.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Liu, Y. J.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

lza, M.

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

Matioli, E.

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
[PubMed]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

Pu, H. H.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

Qi, J.

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Silverstein, L. D.

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Speck, J. S.

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

Sun, X. W.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Sutherland, R. L.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
[PubMed]

Tomlin, D.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
[PubMed]

Tondiglia, V. P.

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082 (2002).
[PubMed]

Weisbuch, C.

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Xiangyu, H. Q.

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

Xu, K. S.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

Yang, K. H.

K. H. Yang, “Measurements of empty cell gap for liquid-crystal displays using interferometric methods,” J. Appl. Phys. 64, 4780–4781 (1988).
[CrossRef]

Yin, D. J.

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

Adv. Mater. (1)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunnin, “Holographic formation of electro-optical polymer liquid crystal photonic crystal,” Adv. Mater. 14, 187–191 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

H. Y. Gao, H. H. Pu, B. Gao, D. J. Yin, J. H. Liu, and F. X. Gan, “Electrically switchable multiple volume hologram recording in polymer dispersed liquid crystal films,” Appl. Phys. Lett. 95, 201105 (2009).
[CrossRef]

D. J. Yin, H. H. Pu, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Analytical rates determinations and simulations on diffusion and reaction processes in holographic photopolymerization,” Appl. Phys. Lett. 94, 211108 (2009).
[CrossRef]

M. J. Escuti, P. Kossyrev, G. P. Crawford, T. G. Fiske, J. Colegrove, and L. D. Silverstein, “Expanded viewing-angle reflection from diffuse holographic polymer dispersed liquid crystal films,” Appl. Phys. Lett. 77, 4262–4264 (2000).
[CrossRef]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal polymer composite,” Appl. Phys. Lett. 86, 041115(2005).
[CrossRef]

J. H. Liu, H. H. Pu, B. Gao, D. J. Yin, H. Y. Gao, and H. T. Dai, “Reactive radical facilitated reaction-diffusion modeling for holographic photopolymerization,” Appl. Phys. Lett. 96, 061103 (2010).
[CrossRef]

A. Getty, E. Matioli, M. lza, C. Weisbuch, and J. S. Speck, “Electroluminescent measurement of the internal quantum efficiency of light emitting diodes,” Appl. Phys. Lett. 94, 181102 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Qi, H. Q. Xiangyu, J. H. Liang, and G. P. Crawford, “Active U-turn electro-optic switch formed in patterned holographic polymer dispersed liquid crystals,” IEEE Photon. Technol. Lett. 15, 685–687 (2003).
[CrossRef]

J. Appl. Phys. (2)

K. H. Yang, “Measurements of empty cell gap for liquid-crystal displays using interferometric methods,” J. Appl. Phys. 64, 4780–4781 (1988).
[CrossRef]

H. H. Pu, D. J. Yin, B. Gao, H. Y. Gao, H. T. Dai, and J. H. Liu, “Dynamic characterizations of high diffraction efficiency in volume Bragg grating formed by holographic photopolymerization,” J. Appl. Phys. 106, 083111 (2009).
[CrossRef]

Opt. Express (1)

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the typical five-layer etalon structure of our HPDLC cell.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup: L 1 and L 2 , achromatic focusing lenses; A, variable aperture; MOF, multimode optical fiber; OSA, optical spectral analyzer; and x y z , three-dimensional adjustable stage.

Fig. 3
Fig. 3

Measured and simulated intensity spectra for sample cell 1, where (a) represents the light source only and (b) and (c) are the transmittance spectra obtained by using focused and collimated incident light beams, respectively. Refer to the text for details.

Fig. 4
Fig. 4

Measured and simulated transmittance spectra of the second sample cell, with the beam diameter at (a) 4 and (b)  6 mm , respectively. Both the focused and collimated incidences are compared.

Fig. 5
Fig. 5

Gap thickness mapping around the central area of the etalon for sample cell 1. Inset, schematic diagram of measuring positions on the cell surface, with solid circles indicating the focused light spot size ( 1 mm ) and the big dashed circle representing the light spot size for the collimated case. L, left; R, right; C, center; U, up; and D, down. δ d is the relative difference of the gap thickness with respect to that of the central spot.

Fig. 6
Fig. 6

(a) Variation of visibility and (b) transmission spectral band intensity, as a function of the focused light spot size on the surface as the etalon moves away from the front of the optical fiber tip toward the focusing lens L 2 in the focused scheme for sample 1. The diameter of the aperture (A) was set at 7 mm .

Tables (1)

Tables Icon

Table 1 Finalized Iteration Parameters for the Measured Transmittance Spectra of Fig. 3 for Focused and Collimated Incident Lights at the Central Position of Cell 1

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) ( n ) = ( 1 + r ai 2 e i δ + + r ai 2 ( n 1 ) e i ( n 1 ) δ ) t ga t ig t ai t ia t gi t ag A ( i ) .
A ( t ) ( ) = T ag T gi T ai 1 r ai 2 e i δ A ( i ) .
I λ ( t ) ( θ air ) = T ag 2 · T gi 2 1 + 4 R ai ( 1 R ai ) 2 sin 2 δ 2 I λ ( i ) ( θ air ) ,
T λ ( d ) = I λ t I λ i = o θ m T ag 2 · T gi 2 1 + 4 R ai ( 1 R ai ) 2 sin 2 δ 2 · sin θ air d θ air 1 cos θ m .
T U ( λ , d ) = I λ U t I λ U i = I λ t + I λ t I λ U i = 1 2 ( T λ ( d ) + T λ ( d ) ) ,
T U ( λ , d ) = α 2 ( T λ ( β , d ) + T λ ( β , d ) ) .
σ ( α , β , d ) = λ ( T m ( λ ) T s ( λ , α , β , d ) ) 2 .

Metrics