Abstract

A novel high sensitivity optical fiber current sensor (OFCS) based on polarization diversity and a Faraday rotation mirror cavity is proposed and demonstrated. Comparing with single-channel detection in a conventional OFCS, a signal power gain of 6dB and a signal-to-noise ratio improvement of over 30dB have been achieved in the new scheme. The cavity amplifies magnetic field-induced nonreciprocal phase modulation, while the Faraday rotation mirrors suppress the reciprocal birefringence. A linear response is obtained for current amplitude as low as several mA at an AC frequency of 1kHz.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20, 267–276 (2002).
    [CrossRef]
  2. Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
    [CrossRef]
  3. Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
    [CrossRef]
  4. K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, “Highly accurate fiber-optic DC current sensor for the electrowinning industry,” IEEE Trans. Ind. Appl. 43, 180–187 (2007).
    [CrossRef]
  5. K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25, 3602–3609 (2007).
    [CrossRef]
  6. M. Belal, Z. Song, Y. Jung, G. Brambilla, and T. P. Newson, “Optical fiber microwire current sensor,” Opt. Lett. 35, 3045–3047 (2010).
    [CrossRef] [PubMed]
  7. W. W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42, 896–897 (2003).
    [CrossRef]
  8. M. Belal, Z.-q. Song, Y. Jung, G. Brambilla, and T. Newson, “An interferometric current sensor based on optical fiber micro wires,” Opt. Express 18, 19951–19956 (2010).
    [CrossRef] [PubMed]
  9. N. C. Pistoni and M. Martinelli, “Vibration-insensitive fiber-optic current sensor,” Opt. Lett. 18, 314–316 (1993).
    [CrossRef] [PubMed]
  10. W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
    [CrossRef]
  11. D. Alasia and L. Thévenaz, “A novel all-fibre configuration for a flexible polarimetric current sensor,” Meas. Sci. Technol. 15, 1525–1530 (2004).
    [CrossRef]
  12. A. Yu and A. S. Siddiqui, “Practical Sagnac interferometer based fiber optic current sensor,” IEE Proc. Optoelectron. 141, 249–256 (1994).
    [CrossRef]
  13. T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
    [CrossRef]
  14. H. D. Pei, J. Zu, and H. Chen, “A novel demodulation method for the Sagnac interferometric fiber current sensor,” ICEMI 2007: Proceedings of 2007 8th International Conference on Electronic Measurement & Instruments, Vol.  4, 208–211(2007).
  15. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (Wiley, 1990).
  16. H. Sabert and E. Brinkmeyer, “Passive birefringence compensation in a frequency comb generator based on a linear fibre optical delay line,” Electron. Lett. 30, 812–814 (1994).
    [CrossRef]

2010

2007

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25, 3602–3609 (2007).
[CrossRef]

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, “Highly accurate fiber-optic DC current sensor for the electrowinning industry,” IEEE Trans. Ind. Appl. 43, 180–187 (2007).
[CrossRef]

2004

Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
[CrossRef]

D. Alasia and L. Thévenaz, “A novel all-fibre configuration for a flexible polarimetric current sensor,” Meas. Sci. Technol. 15, 1525–1530 (2004).
[CrossRef]

2003

W. W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42, 896–897 (2003).
[CrossRef]

W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
[CrossRef]

2002

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, “Temperature and vibration insensitive fiber-optic current sensor,” J. Lightwave Technol. 20, 267–276 (2002).
[CrossRef]

2001

T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
[CrossRef]

1994

H. Sabert and E. Brinkmeyer, “Passive birefringence compensation in a frequency comb generator based on a linear fibre optical delay line,” Electron. Lett. 30, 812–814 (1994).
[CrossRef]

A. Yu and A. S. Siddiqui, “Practical Sagnac interferometer based fiber optic current sensor,” IEE Proc. Optoelectron. 141, 249–256 (1994).
[CrossRef]

1993

Alasia, D.

D. Alasia and L. Thévenaz, “A novel all-fibre configuration for a flexible polarimetric current sensor,” Meas. Sci. Technol. 15, 1525–1530 (2004).
[CrossRef]

Belal, M.

Bohnert, K.

Brambilla, G.

Brandle, H.

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, “Passive birefringence compensation in a frequency comb generator based on a linear fibre optical delay line,” Electron. Lett. 30, 812–814 (1994).
[CrossRef]

Brunzel, M. G.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, “Highly accurate fiber-optic DC current sensor for the electrowinning industry,” IEEE Trans. Ind. Appl. 43, 180–187 (2007).
[CrossRef]

K. Bohnert, P. Gabus, J. Nehring, H. Brandle, and M. G. Brunzel, “Fiber-optic current sensor for electrowinning of metals,” J. Lightwave Technol. 25, 3602–3609 (2007).
[CrossRef]

Chen, H.

H. D. Pei, J. Zu, and H. Chen, “A novel demodulation method for the Sagnac interferometric fiber current sensor,” ICEMI 2007: Proceedings of 2007 8th International Conference on Electronic Measurement & Instruments, Vol.  4, 208–211(2007).

Chen, M. H.

W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
[CrossRef]

Gabus, P.

Guggenbach, P.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, “Highly accurate fiber-optic DC current sensor for the electrowinning industry,” IEEE Trans. Ind. Appl. 43, 180–187 (2007).
[CrossRef]

Huang, S. C.

W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
[CrossRef]

Jung, Y.

Lee, B.

Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
[CrossRef]

Lee, Y. W.

Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
[CrossRef]

Lin, W. W.

W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
[CrossRef]

W. W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42, 896–897 (2003).
[CrossRef]

Luo, C.

T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
[CrossRef]

Martinelli, M.

Nehring, J.

Newson, T.

Newson, T. P.

Niu, Y. X.

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Pei, H. D.

H. D. Pei, J. Zu, and H. Chen, “A novel demodulation method for the Sagnac interferometric fiber current sensor,” ICEMI 2007: Proceedings of 2007 8th International Conference on Electronic Measurement & Instruments, Vol.  4, 208–211(2007).

Pistoni, N. C.

Sabert, H.

H. Sabert and E. Brinkmeyer, “Passive birefringence compensation in a frequency comb generator based on a linear fibre optical delay line,” Electron. Lett. 30, 812–814 (1994).
[CrossRef]

Siddiqui, A. S.

A. Yu and A. S. Siddiqui, “Practical Sagnac interferometer based fiber optic current sensor,” IEE Proc. Optoelectron. 141, 249–256 (1994).
[CrossRef]

Song, Z.

Song, Z.-q.

Thévenaz, L.

D. Alasia and L. Thévenaz, “A novel all-fibre configuration for a flexible polarimetric current sensor,” Meas. Sci. Technol. 15, 1525–1530 (2004).
[CrossRef]

Udd, E.

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (Wiley, 1990).

Wang, T.

T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
[CrossRef]

Wang, Y. F.

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Wu, D. S.

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Yoon, Y.

Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
[CrossRef]

Yu, A.

A. Yu and A. S. Siddiqui, “Practical Sagnac interferometer based fiber optic current sensor,” IEE Proc. Optoelectron. 141, 249–256 (1994).
[CrossRef]

Zhang, C.

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Zhang, P.

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Zheng, S.

T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
[CrossRef]

Zu, J.

H. D. Pei, J. Zu, and H. Chen, “A novel demodulation method for the Sagnac interferometric fiber current sensor,” ICEMI 2007: Proceedings of 2007 8th International Conference on Electronic Measurement & Instruments, Vol.  4, 208–211(2007).

Electron. Lett.

H. Sabert and E. Brinkmeyer, “Passive birefringence compensation in a frequency comb generator based on a linear fibre optical delay line,” Electron. Lett. 30, 812–814 (1994).
[CrossRef]

IEE Proc. Optoelectron.

A. Yu and A. S. Siddiqui, “Practical Sagnac interferometer based fiber optic current sensor,” IEE Proc. Optoelectron. 141, 249–256 (1994).
[CrossRef]

IEEE Trans. Ind. Appl.

K. Bohnert, H. Brandle, M. G. Brunzel, P. Gabus, and P. Guggenbach, “Highly accurate fiber-optic DC current sensor for the electrowinning industry,” IEEE Trans. Ind. Appl. 43, 180–187 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas.

T. Wang, C. Luo, and S. Zheng, “A fiber-optic current sensor based on a differentiating Sagnac interferometer,” IEEE Trans. Instrum. Meas. 50, 705–708 (2001).
[CrossRef]

J. Lightwave Technol.

J. Sens. Actuators A

Y. W. Lee, Y. Yoon, and B. Lee, “A simple fiber-optic current sensor using a long-period fiber grating inscribed on a polarization-maintaining fiber as a sensor demodulator,” J. Sens. Actuators A 112, 308–312 (2004).
[CrossRef]

Meas. Sci. Technol.

D. Alasia and L. Thévenaz, “A novel all-fibre configuration for a flexible polarimetric current sensor,” Meas. Sci. Technol. 15, 1525–1530 (2004).
[CrossRef]

Opt. Eng.

W. W. Lin, “Fiber-optic current sensor,” Opt. Eng. 42, 896–897 (2003).
[CrossRef]

W. W. Lin, S. C. Huang, and M. H. Chen, “Fiber optic microampere dc current sensor,” Opt. Eng. 42, 2551–2557 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

Y. X. Niu, D. S. Wu, Y. F. Wang, C. Zhang, and P. Zhang, “Faraday optical fiber current sensor with phase conjugate device,” Proc. SPIE 4920, 400–404 (2002).
[CrossRef]

Other

H. D. Pei, J. Zu, and H. Chen, “A novel demodulation method for the Sagnac interferometric fiber current sensor,” ICEMI 2007: Proceedings of 2007 8th International Conference on Electronic Measurement & Instruments, Vol.  4, 208–211(2007).

E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, 2nd ed. (Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of the OFCS with PD detection and an FRMC: PC, polarization controller; FUT, fiber under test; BD, balanced detector; OSC, oscilloscope.

Fig. 2
Fig. 2

Toroidal coil formed by wrapping copper wire with 50 turns around a spool of optical fiber. The radius of the spool is 4.25 cm .

Fig. 3
Fig. 3

Beam split in a PB: s, slow axis; f, fast axis.

Fig. 4
Fig. 4

Measured results for 1 kHz AC current with an amplitude of 3 A : (a) time domain signals; (b) power spectra.

Fig. 5
Fig. 5

Measured results for 1 kHz AC current with an amplitude of 0.15 A : (a) time domain signals; (b) power spectra.

Fig. 6
Fig. 6

Comparison of noise levels measured with PD detection and single-channel detection.

Fig. 7
Fig. 7

Signal amplitude as a function of peak current at different coupling ratios.

Fig. 8
Fig. 8

Signal gain of the FRMC as a function of the power percentage coupled to the second FRM.

Fig. 9
Fig. 9

Measured results for an amplitude of 6 mA with a 50 50 cavity. (a) Time domain signal, (b) power spectrum.

Fig. 10
Fig. 10

Signal amplitude as a function of peak current obtained with a 50 50 cavity.

Tables (1)

Tables Icon

Table 1 Comparison of Typical Noise Measured with PD Detection and Single-Channel Detection

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = v B · d l ,
E f = E 0 cos ω 0 t · cos φ , E s = E 0 cos ω 0 t · sin φ ,
I = E f 2 E s 2 = α · P 0 ( cos 2 φ sin 2 φ ) .
d I d φ = 2 α · P 0 sin 2 φ ,
I = α · P 0 [ cos 2 ( π 4 + θ ) sin 2 ( π 4 + θ ) ] = α · P 0 sin 2 θ 2 α · P 0 θ .
I = α · P 0 cos 2 ( π 4 + θ ) = 1 2 α · P 0 ( 1 sin 2 θ ) α · P 0 θ + α · P 0 2 .

Metrics