Abstract

We present a method to reconstruct the pulse shape of polarization-shaped femtosecond laser pulses after a hollow-core photonic crystal fiber by reflecting the pulses back through the fiber. First, a procedure is introduced to receive the optical fiber properties and generate parametrically shaped pulses after propagation through the fiber. Changes of the fiber’s birefringence by mechanical stress are examined to investigate the correlation between the pulse shapes after one and two passes through the fiber. Finally, we demonstrate the characterization of the pulse after one pass through the fiber by calculating the pulse shape from the measured pulse after two passes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(10), 11–15 (2007).
  2. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29, 1285–1287 (2004).
    [CrossRef] [PubMed]
  3. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
    [CrossRef] [PubMed]
  4. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
    [CrossRef] [PubMed]
  5. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
    [CrossRef] [PubMed]
  6. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16, 5556–5564 (2008).
    [CrossRef] [PubMed]
  7. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
    [CrossRef] [PubMed]
  8. M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
    [CrossRef]
  9. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
    [CrossRef] [PubMed]
  10. S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
    [CrossRef] [PubMed]
  11. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
    [CrossRef] [PubMed]
  12. F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
    [CrossRef]
  13. C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
    [CrossRef]
  14. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett. 29, 2602–2604 (2004).
    [CrossRef] [PubMed]
  15. H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
    [CrossRef] [PubMed]
  16. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
    [CrossRef] [PubMed]
  17. L. Fu and M. Gu, “Polarization anisotropy in fiber-optic second harmonic generation microscopy,” Opt. Express 16, 5000–5006 (2008).
    [CrossRef] [PubMed]
  18. F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
    [CrossRef]
  19. H. Hurwitz, Jr., and R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 493–495 (1941).
    [CrossRef]
  20. C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007).
  21. B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.
  22. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
    [CrossRef] [PubMed]
  23. P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” Opt. Lett. 33, 267–269 (2008).
    [CrossRef] [PubMed]
  24. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [CrossRef] [PubMed]
  25. K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
    [CrossRef]

2010 (2)

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[CrossRef]

2009 (2)

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

2008 (4)

2007 (4)

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(10), 11–15 (2007).

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
[CrossRef] [PubMed]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

1941 (1)

Achazi, G.

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[CrossRef]

Bartels, R. A.

Baumert, T.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Bayer, T.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

Brixner, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef] [PubMed]

Cavalieri, A. L.

Chang, C.-C.

Chang, C.-L.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Chen, C.-L.

C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007).

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Engelbrecht, C. J.

Feurer, T.

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.

Fittinghoff, D. N.

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Fritz, D. M.

Fu, L.

Gerber, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Göbel, W.

Graefe, O.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Gu, M.

Hacker, M.

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.

Helmchen, F.

Horn, C.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Hung, C.-F.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Hurwitz, H.

Johnston, R. S.

Jones, R. C.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
[CrossRef] [PubMed]

Kiang, J. G.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Köhler, J.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[CrossRef] [PubMed]

Krampert, G.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Krug, M.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

Lee, S. H.

Liese, D.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Lindinger, A.

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef] [PubMed]

Masihzadeh, O.

Miao, H.

Miller, P. J.

Mirkin, L.

Myaing, M.

Nimmerjahn, A.

Pfeifer, T.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Plewicki, M.

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Reis, D. A.

Russell, P.

P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(10), 11–15 (2007).

Sardesai, H. P.

Sarpe-Tudoran, C.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

Schlup, P.

Schmidt, B.

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
[CrossRef] [PubMed]

Seibel, E. J.

Selle, R.

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Smirl, A. L.

Stobrawa, G.

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.

Trebino, R.

Tsen, K. T.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Tsen, S.-W. D.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Walecki, W. J.

Weber, S. M.

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Weiner, A. M.

Weise, F.

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach–Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Wollenhaupt, M.

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Wu, T.-C.

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Xu, L.

Appl. Opt. (1)

Appl. Phys. B (2)

M. Wollenhaupt, M. Krug, J. Köhler, T. Bayer, C. Sarpe-Tudoran, and T. Baumert, “Photoelectron angular distributions from strong-field coherent electronic excitation,” Appl. Phys. B 95, 245–259 (2009).
[CrossRef]

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

IEEE LEOS Newsletter (1)

P. Russell, “Photonic crystal fibers: a historical account,” IEEE LEOS Newsletter 21(10), 11–15 (2007).

J. Chem. Phys. (1)

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

J. Microsc. (2)

L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226, 195–206 (2007).
[CrossRef] [PubMed]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. Condens. Matter (1)

K. T. Tsen, S.-W. D. Tsen, C.-L. Chang, C.-F. Hung, T.-C. Wu, and J. G. Kiang, “Inactivation of viruses with a very low power visible femtosecond laser,” J. Phys. Condens. Matter 19, 322102 (2007).
[CrossRef]

Nat. Biotechnol. (1)

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21, 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (8)

C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
[CrossRef]

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett. 29, 2602–2604 (2004).
[CrossRef] [PubMed]

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29, 1285–1287 (2004).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
[CrossRef] [PubMed]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81–83 (1997).
[CrossRef] [PubMed]

P. Schlup, O. Masihzadeh, L. Xu, R. Trebino, and R. A. Bartels, “Tomographic retrieval of the polarization state of an ultrafast laser pulse,” Opt. Lett. 33, 267–269 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

F. Weise, G. Achazi, and A. Lindinger, “Parametrically polarization-shaped pulses via a hollow-core photonic crystal fiber,” Phys. Rev. A 82, 053827 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, “Quantum control by ultrafast polarization shaping,” Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

Other (2)

C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, 2007).

B. Schmidt, M. Hacker, G. Stobrawa, and T. Feurer, “LAB2: a virtual femtosecond laser lab,” http://www.lab2.de.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for generation and detection of polarization-shaped laser pulses which are guided through a hollow-core fiber. The femtosecond laser pulses are shaped by a pulse shaper before they are coupled into the fiber. At the distal fiber end, the pulses are either reflected back through the fiber or sent through the second beam path before they are detected by cross-correlation measurements.

Fig. 2
Fig. 2

Pulse shape of an uncompensated laser pulse after transmission through the fiber. Before the fiber, the pulse is short and linearly polarized at an angle of 45 ° relative to the optical axes. Because of the different group velocities along the two optical axes, the pulse is split into two orthogonal linearly polarized pulses. The graph on the left gives the time evolution of the intensity (solid curve), ellipticity (dashed curve), and orientation (dotted curve) of the pulse. On the right, a three-dimensional image of the pulse is shown.

Fig. 3
Fig. 3

Change of the state of polarization of a short pulse by twisting the hollow-core fiber. The state of polarization is given by orientation γ and ellipticity r. The values are fitted by a simple model of the fiber (see Section 5).

Fig. 4
Fig. 4

Pulses after one and two passes through the fiber. Both double pulses consist of an f and an s pulse in a distance of 1200 fs . (a) shows a pulse after one pass through the fiber, generated by using the compensation factors from Table 1. The pulse in (b) is detected after the second pass through the fiber uses the doubled compensation factors.

Fig. 5
Fig. 5

Differences in the zero-order phases needed to create a linearly polarized pulse oriented at 45 ° relative to the optical axes after one and two passes through the fiber dependent on the twist angle. The twist angle is changed in steps of 180 ° .

Fig. 6
Fig. 6

Reconstruction of the pulse shape. In (a), the pulse shape measured after the first pass through the fiber is shown. The first subpulse is polarized along the slow axis of the fiber; the second is polarized under 45 ° to the fiber axes and therefore generated by overlapping a slow and fast pulse. (b) shows the pulse shape of the same pulse measured after the second pass through the fiber. The prototype pulses are chirped and do not overlap anymore in time because of the different group velocities along the two optical axes of the fiber. The calculated pulse which is created by the fitted parameters (Table 2) is displayed in (c). By applying the compensation factors of the fiber and the ϵ 2 c ϵ c offset, one gets the simulated pulse shape after one pass through the fiber (d).

Tables (2)

Tables Icon

Table 1 Compensation Parameters for a Perfect Temporal Overlap of Two Pulses Polarized along the Fast (f Pulse) and Slow (s Pulse) Axis of the Hollow-Core Fiber a

Tables Icon

Table 2 Parameters of the Pulse from Fig. 6b after Two Passes through the Fiber Obtained by the Fitting Procedure

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J f b = Rot ( β ) · [ exp ( i ϕ f ) 0 0 exp ( i ϕ s ) ] · Rot ( α ) ,
Rot ( θ ) = [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] .
E ˜ out ( ω ) = E ˜ in ( ω ) N [ A c s s N exp ( i ( Φ c s ( ω ) + ϵ c + ϕ N ( ω ) + ϵ N ) ) A c f f N exp ( i ( Φ c f ( ω ) + ϕ N ( ω ) ) ) ] ,
J f b = n = 0 N { Rot ( δ n ) · [ 1 0 0 exp ( Δ ϕ N ) ] · Rot ( δ n ) } ,
J f b = Rot ( β ) · [ cos ( Γ ) + i Δ ϕ 2 sinc ( Γ ) ( β α ) sinc ( Γ ) ( β α ) sinc ( Γ ) cos ( Γ ) i Δ ϕ 2 sinc ( Γ ) ] · Rot ( α ) ,
J b r = ( J f b ) T · J f b = Rot ( α ) · [ exp ( i 2 ϕ f ( ω ) ) 0 0 exp ( i 2 ϕ s ( ω ) ) ] · Rot ( α ) ,

Metrics