Abstract

Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213nm) and fourth(266nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266nm pulses (8.4J/cm2) than for 213nm pulses (1.4J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266nm pulses, but transmission of 213nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213nm) and fourth (266nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this technique.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
    [CrossRef]
  2. S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).
  3. J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
    [CrossRef]
  4. F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).
  5. J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
    [CrossRef]
  6. G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).
  7. T. P. Coohill, “Uses and effects of ultraviolet radiation on cells and tissues,” in Lasers in Medicine, R.W.Waynant, ed. (CRC, 2002), pp. 85–107.
  8. W. G. Driscoll, W. Vaughan, and Optical Society of America, Handbook of Optics (McGraw-Hill, 1978).
  9. V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
    [CrossRef]
  10. M. Vogel and K. Lauritzen, “Selective excimer laser ablation of the trabecular meshwork. Clinical results,” Ophthalmologe 94, 665–667 (1997).
    [CrossRef]
  11. F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
    [CrossRef]
  12. E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
    [CrossRef]
  13. M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).
  14. J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
    [CrossRef]
  15. P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
    [CrossRef]
  16. A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).
  17. D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).
  18. G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
    [CrossRef]
  19. M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
    [CrossRef]
  20. S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
    [CrossRef]
  21. T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
    [CrossRef]
  22. D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
    [CrossRef]
  23. X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
    [CrossRef]
  24. M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
    [CrossRef]
  25. F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
    [CrossRef]
  26. N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
    [CrossRef]
  27. K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
    [CrossRef]
  28. X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
    [CrossRef]

2010

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

2009

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

2007

J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

2006

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

2005

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

2004

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

2003

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

2002

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

2001

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

1999

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

1997

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

M. Vogel and K. Lauritzen, “Selective excimer laser ablation of the trabecular meshwork. Clinical results,” Ophthalmologe 94, 665–667 (1997).
[CrossRef]

1994

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
[CrossRef]

1992

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

1989

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

1986

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

1985

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

1983

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).

Arndt, R.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Atherton, L. J.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Awh, C. C.

E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
[CrossRef]

Balaratnasingam, C.

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

Belmahdi, J.

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

Bindewald, A.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

Braren, B.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).

Campbell, J. H.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Clarkin, J. P.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Coohill, T. P.

T. P. Coohill, “Uses and effects of ultraviolet radiation on cells and tissues,” in Lasers in Medicine, R.W.Waynant, ed. (CRC, 2002), pp. 85–107.

Cringle, S. J.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

Dair, G. T.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

de Juan, E.

E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
[CrossRef]

De Marco, F. P.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Denham, D.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Dietz, H.

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Dreiskemper, R.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Driscoll, W. G.

W. G. Driscoll, W. Vaughan, and Optical Society of America, Handbook of Optics (McGraw-Hill, 1978).

Fankhauser, F.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Fish, G.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

Gorbatov, M.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

Gruen, D. M.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Hemo, I.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

Hillrichs, G.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Holz, F. G.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

Joos, K. M.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Kamimura, T.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Khalilov, V. K.

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

Klein, K.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Klein, K. F.

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Klein, K.-F.

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

Kohler, M.

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

Kongratyuk, N.

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Kozlowski, M. R.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Krueger, R. R.

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

Kuzuu, N.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

L’Esperance, F. A.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Lauritzen, K.

M. Vogel and K. Lauritzen, “Selective excimer laser ablation of the trabecular meshwork. Clinical results,” Ophthalmologe 94, 665–667 (1997).
[CrossRef]

Lewis, A.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

Linares, S. M.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

Lloyd, D. J.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

Manns, F.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Marshall, J.

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

Martin, C. A.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Matsuura, Y.

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Miller, J.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

Miyagi, M.

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Molotkov, D.

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Morgan, A. J.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Morgan, W. H.

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

Namba, Y.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Nelson, G.

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

Nelson, G. W.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Ochi, K.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Palanker, D.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

Parej, J. M.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Pe’er, J.

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

Pellin, M. J.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Pelouch, W. S.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

Peters, M. A.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Rainer, F.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Reinholz, F.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

Ren, Q.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Rothery, S.

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

Ruetting, M.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Rutting, M.

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Schallen, E. H.

E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
[CrossRef]

Schastak, S.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Schastak, S. I.

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Schutt, F.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

Shen, J. H.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Soderberg, P. G.

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Specht, H.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

Srinivasan, R.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).

Staggs, M. C.

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

Su, E. N.

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

Telfair, W. B.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Timmerman, R.

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

Trokel, S.

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

Trokel, S. L.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).

Tsuboi, Y.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Turovets, I.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

van Saarloos, P. P.

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

Vaughan, W.

W. G. Driscoll, W. Vaughan, and Optical Society of America, Handbook of Optics (McGraw-Hill, 1978).

Veidemanis, M.

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

Vogel, M.

M. Vogel and K. Lauritzen, “Selective excimer laser ablation of the trabecular meshwork. Clinical results,” Ophthalmologe 94, 665–667 (1997).
[CrossRef]

Wang, Y. S.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Warner, J. W.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Wiedemann, P.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

Williams, G. A.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Yafai, Y.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Yasukawa, T.

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Yoder, P. R.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Yoshida, H.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Yoshida, K.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Young, C. E.

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Yu, D. Y.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

Yu, D.-Y.

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

Yu, P. K.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

J. Miller, P. K. Yu, S. J. Cringle, and D.-Y. Yu, “Laser-fiber system for ablation of intraocular tissue using the fourth harmonic of a pulsed Nd:YAG laser,” Appl. Opt. 46, 413–420 (2007).
[CrossRef]

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

Yu, X. B.

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

Yu, X.-B.

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

Zauberman, H.

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

Am. J. Ophthalmol.

S. L. Trokel, R. Srinivasan, and B. Braren, “Excimer laser surgery of the cornea,” Am. J. Ophthalmol. 96, 710–715 (1983).

M. J. Pellin, G. A. Williams, C. E. Young, D. M. Gruen, and M. A. Peters, “Endoexcimer laser intraocular ablative photodecomposition,” Am. J. Ophthalmol. 99, 483–484 (1985).

Appl. Opt.

Arch. Ophthalmol.

F. A. L’Esperance, Jr., J. W. Warner, W. B. Telfair, P. R. Yoder, Jr., and C. A. Martin, “Excimer laser instrumentation and technique for human corneal surgery,” Arch. Ophthalmol. 107, 131–139 (1989).

Biomed. Tech.

F. G. Holz, A. Bindewald, F. Schutt, and H. Specht, “Intraocular microablation of choroidal tissue by a 308 nm AIDA excimer laser for RPE-transplantation in patients with age-related macular degeneration,” Biomed. Tech. 48, 82–85(2003).
[CrossRef]

Br. J. Ophthalmol.

J. Marshall, S. Trokel, S. Rothery, and R. R. Krueger, “A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser,” Br. J. Ophthalmol. 70, 482–501 (1986).
[CrossRef]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef]

Exp. Eye Res.

M. Gorbatov, J. Miller, P. K. Yu, S. J. Cringle, and D. Y. Yu, “Ablation of subretinal tissue with optical fiber delivered 266 nm laser pulses,” Exp. Eye Res. 91, 257–263 (2010).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

X. B. Yu, J. Miller, P. K. Yu, S. J. Cringle, C. Balaratnasingam, W. H. Morgan, and D. Y. Yu, “Ablation of intraocular tissue with fiber-optic probe-delivered 266 nm and 213 nm laser energy,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

X.-B. Yu, J. Miller, P. K. Yu, S. J. Cringle, W. H. Morgan, C. Balaratnasingam, and D.-Y. Yu, “Ablation of intraocular tissues with fiberoptic probe delivered 266 nm and 213 nm laser,” Invest. Ophthalmol. Visual Sci. 50, 3729–3736 (2009).
[CrossRef]

G. T. Dair, W. S. Pelouch, P. P. van Saarloos, D. J. Lloyd, S. M. Linares, and F. Reinholz, “Investigation of corneal ablation efficiency using ultraviolet 213 nm solid state laser pulses,” Invest. Ophthalmol. Visual Sci. 40, 2752–2756 (1999).

P. K. Yu, J. Miller, S. J. Cringle, and D.-Y. Yu, “Experimental retinal ablation using a fourth-harmonic 266 nm laser coupled with an optical fiber probe,” Invest. Ophthalmol. Visual Sci. 47, 1587–1593 (2006).
[CrossRef]

A. Lewis, D. Palanker, I. Hemo, J. Pe’er, and H. Zauberman, “Microsurgery of the retina with a needle-guided 193 nm excimer laser,” Invest. Ophthalmol. Visual Sci. 33, 2377–2381(1992).

D. Palanker, I. Hemo, I. Turovets, H. Zauberman, G. Fish, and A. Lewis, “Vitreoretinal ablation with the 193 nm excimer laser in fluid media,” Invest. Ophthalmol. Visual Sci. 35, 3835–3840 (1994).

Jpn. J. Appl. Phys.

N. Kuzuu, K. Yoshida, K. Ochi, Y. Tsuboi, T. Kamimura, H. Yoshida, and Y. Namba, “Laser-induced bulk damage of various types of silica glasses at 266 nm,” Jpn. J. Appl. Phys. 43, 7174–7175 (2004).
[CrossRef]

Lasers Med. Sci.

T. Yasukawa, Y. Yafai, Y. S. Wang, H. Dietz, D. Molotkov, N. Kongratyuk, G. Hillrichs, P. Wiedemann, and S. I. Schastak, “Preliminary results of development of a single-mode Q-switched Nd:YAG ring laser at 213 nm and its application for the microsurgical dissection of retinal tissue ex vivo,” Lasers Med. Sci. 19, 234–239 (2005).
[CrossRef]

Lasers Surg. Med.

E. H. Schallen, C. C. Awh, and E. de Juan, Jr., “Rate-dependent, nonlinear photoablation of ocular tissue at 308 nm,” Lasers Surg. Med. 15, 99–106 (1994).
[CrossRef]

S. Schastak, Y. Yafai, T. Yasukawa, Y. S. Wang, G. Hillrichs, and P. Wiedemann, “Flexible UV light guiding system for intraocular laser microsurgery,” Lasers Surg. Med. 39, 353–357(2007).
[CrossRef]

J. H. Shen, K. M. Joos, F. Manns, Q. Ren, F. Fankhauser, D. Denham, P. G. Soderberg, and J. M. Parej, “Ablation rate of PMMA and human cornea with a frequency-quintupled Nd:YAG laser (213 nm),” Lasers Surg. Med. 21, 179–185(1997).
[CrossRef]

Ophthalmologe

M. Vogel and K. Lauritzen, “Selective excimer laser ablation of the trabecular meshwork. Clinical results,” Ophthalmologe 94, 665–667 (1997).
[CrossRef]

Proc. SPIE

G. Hillrichs, H. Dietz, M. Rutting, S. Schastak, P. Wiedemann, Y. Matsuura, M. Miyagi, and K. F. Klein, “Flexible beam guiding in a microsurgical UV laser scalpel,” Proc. SPIE 4616, 199–206 (2002).
[CrossRef]

M. Kohler, H. Dietz, Y. Matsuura, M. Miyagi, K. F. Klein, and G. Hillrichs, “Status and improvements of UV laser scalpel,” Proc. SPIE 4957, 92–96 (2003).
[CrossRef]

V. K. Khalilov, K.-F. Klein, J. Belmahdi, R. Timmerman, and G. Nelson, “High-OH fibers with higher stability in the UV-region,” Proc. SPIE 6083, 608308 (2006).
[CrossRef]

F. Rainer, L. J. Atherton, J. H. Campbell, F. P. De Marco, M. R. Kozlowski, A. J. Morgan, and M. C. Staggs, “Four-harmonic database of laser-damage testing,” Proc. SPIE 1624, 116–127 (1992).
[CrossRef]

K. Klein, R. Arndt, G. Hillrichs, M. Ruetting, M. Veidemanis, R. Dreiskemper, J. P. Clarkin, and G. W. Nelson, “UV fibers for applications below 200 nm,” Proc. SPIE 4253, 42–49 (2001).
[CrossRef]

Prog. Retin. Eye Res.

D. Y. Yu, E. N. Su, S. J. Cringle, and P. K. Yu, “Isolated preparations of ocular vasculature and their applications in ophthalmic research,” Prog. Retin. Eye Res. 22, 135–169(2003).
[CrossRef]

Other

T. P. Coohill, “Uses and effects of ultraviolet radiation on cells and tissues,” in Lasers in Medicine, R.W.Waynant, ed. (CRC, 2002), pp. 85–107.

W. G. Driscoll, W. Vaughan, and Optical Society of America, Handbook of Optics (McGraw-Hill, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the laser and optical fiber delivery system. The system generates either the fifth ( 213 nm ) or fourth ( 266 nm ) harmonics of an Nd:YAG laser. The laser pulses are delivered to the tissue via an optical fiber with a tapered tip.

Fig. 2
Fig. 2

Maximum fluence output from 100 mm lengths of optical fiber. A hollow glass taper was used to concentrate the pulsed laser beam before its launch into the optical fiber. Data are mean ± SD .

Fig. 3
Fig. 3

Threshold fluence at which damage occurred within the core of type 1b and 3 optical fibers when transmitting pulsed 213 and 266 nm radiation, respectively. Prior to measurement, the fibers were pulled into a waist or a taper. As a laser pulse propagates along the fiber, the fluence within the optical fiber core will be greatest at the narrowest point of the these waists or tapers; hence, when optically induced damage occurred, it was at these waists or tapers. Transmitting 213 nm laser pulses, the type 3 optical fiber had a mean failure fluence of 3.8 J / cm 2 with a standard deviation of 1.6. Transmitting 266 nm , the type 1b optical fiber had a mean failure fluence of 8.4 J / cm 2 with a standard deviation of 1.4.

Fig. 4
Fig. 4

Maximum pulse energy as a function of total optical fiber length when transmitting 266 nm pulses along unmodified silica/silica (type 1b) optical fibers. The optical fiber had a core diameter of 200 μm , except at the output end where a waist or taper with core diameter of between 42 and 59 μm had been pulled.

Fig. 5
Fig. 5

Maximum pulse energy as a function of total optical fiber length when transmitting 213 nm pulses along modified silica/silica (type 3) optical fibers. The optical fiber had a core diameter of 200 μm , except at the output tip which had been tapered to core diameters of between 31 and 74 μm . Also plotted are the energies output from lengths of fiber with untapered tips.

Fig. 6
Fig. 6

Output fluence, as a function of number of pulses, for a length of silica/silica, type 3, optical fiber transmitting 213 nm pulses. Two values of input energy were used, these remained constant for the duration of each set of 1000 pulses. The optical fiber was 720 mm long with a core diameter of 200 μm , except at the output tip which had been tapered to a core diameter of 74 μm . Error bars show the measured root mean stability of the pulse energy over 20 pulses.

Fig. 7
Fig. 7

Typical output fluence, as a function of number of pulses, for a length of silica/silica, type 1b optical fiber transmitting 266 nm pulses. Two values of input energy were used; these remained constant for the duration of each set of 1000 pulses. The optical fiber was 720 mm long with a core diameter of 200 μm , except at the output tip which had been tapered to a core diameter of 52 μm . Error bars show the measured root mean stability of the pulse energy over 20 pulses.

Fig. 8
Fig. 8

Retinal ablation depth as a function of fluence for ablated lesions generated using single pulses of 213 and 266 nm pulsed laser radiation. Each data point represents the mean ablation depth measure from between six and nine ablated lesions. Data are mean ± SE .

Tables (1)

Tables Icon

Table 1 Data Describing the Effective Operating Window of Fluences Available for Tissue Ablation at Both 213 and 266 nm a

Metrics