Abstract

Developed highly chirped broadband fiber Bragg gratings and suspended-core fibers are shown to offer flexible dispersion management and allow for femtosecond oscillators with transform-limited pulse quality. Such dispersion compensators could have potential, particularly for all-fiber chirped-pulse amplification systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150-152(1984).
    [CrossRef] [PubMed]
  2. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
    [CrossRef]
  3. D. Kopf, G. J. Spühler, K. J. Weingarten, and U. Keller, “Mode-locked laser cavities with a single prism for dispersion compensation,” Appl. Opt. 35, 912-915 (1996).
    [CrossRef] [PubMed]
  4. P. C. Wagenblast and U. Morgner, “Generation of sub-10 fs from a Kerr-lens mode-locked Cr3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors,” Opt. Lett. 27, 1726-1728 (2002).
    [CrossRef]
  5. J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
    [CrossRef]
  6. A. Isomaki and O. G. Okhotnikov, “All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber,” Opt. Express 14, 4368-4373(2006).
    [CrossRef] [PubMed]
  7. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  8. S. Kivistö, R. Herda, and O. G. Okhotnikov, “All-fiber supercontinuum source based on mode-locked ytterbium laser with dispersion compensation by linearly chirped Bragg grating,” Opt. Express 16, 265-270 (2008).
    [CrossRef] [PubMed]
  9. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
    [PubMed]
  10. B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, “Self-starting passively mode-locked chirped-pulse fiber laser,” Opt. Express 15, 16794-16799 (2007).
    [CrossRef] [PubMed]
  11. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17, 3285-3290 (2009).
    [CrossRef] [PubMed]
  12. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646-2657 (2009).
    [CrossRef] [PubMed]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  14. O. G. Okhotnikov, L. A. Gomes, N. Xiang, T. Jouhti, and A. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070 nm spectral range,” Opt. Lett. 28, 1522-1524(2003).
    [CrossRef] [PubMed]
  15. R. Herda and O. G. Okhotnikov, “Mode-locked Yb-doped fiber laser with external compression to 89 fs in normal dispersion fiber,” Appl. Opt. 47, 1182-1186 (2008).
    [CrossRef] [PubMed]
  16. B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
    [CrossRef]
  17. K. Hougaard and F. D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Rep. 1, 63-83(2004).
    [CrossRef]

2009 (3)

M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17, 3285-3290 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646-2657 (2009).
[CrossRef] [PubMed]

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

2008 (2)

2007 (1)

2006 (1)

2004 (1)

K. Hougaard and F. D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Rep. 1, 63-83(2004).
[CrossRef]

2003 (1)

2002 (1)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

1984 (1)

1969 (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Bennion, I.

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

Bernier, M.

Chai, L.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Cho, G. C.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Dong, L.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Doran, N. J.

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

Ebendorff-Heidepriem, H.

Fang, X.-H.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Fermann, M. E.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Fork, R. L.

Gaylord, T. K.

Gomes, L. A.

Gordon, J. P.

Grann, E. B.

Grudinin, A.

Hartl, I.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Herda, R.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hougaard, K.

K. Hougaard and F. D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Rep. 1, 63-83(2004).
[CrossRef]

Hu, M.-L.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Imeshev, G.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Isomaki, A.

Jouhti, T.

Keller, U.

Kivistö, S.

Kopf, D.

Limpert, J.

Liu, B.-W.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Martinez, O. E.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Moharam, M. G.

Monro, T. M.

Morgner, U.

Nielsen, F. D.

K. Hougaard and F. D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Rep. 1, 63-83(2004).
[CrossRef]

Okhotnikov, O. G.

Ortaç, B.

Plötner, M.

Pommet, D. A.

Sheng, Y.

Song, Y.-J.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Spühler, G. J.

Sugden, K.

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

Treacy, E.

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

Tünnermann, A.

Vallée, R.

Wagenblast, P. C.

Wang, C.-Y.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Warren-Smith, S. C.

Weingarten, K. J.

Williams, J. A. R.

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

Wu, Y.-Z.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Xiang, N.

Zheltikov, A. M.

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

J. A. R. Williams, I. Bennion, K. Sugden, and N. J. Doran, “Fiber dispersion compensation using a chirped in-fibre Bragg grating,” Electron. Lett. 30, 985-987 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454-458 (1969).
[CrossRef]

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

J. Opt. Fiber Commun. Rep. (1)

K. Hougaard and F. D. Nielsen, “Amplifiers and lasers in PCF configurations,” J. Opt. Fiber Commun. Rep. 1, 63-83(2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

B.-W. Liu, M.-L. Hu, X.-H. Fang, Y.-Z. Wu, Y.-J. Song, L. Chai, C.-Y. Wang, and A. M. Zheltikov, “High-power wavelength-tunable photonic-crystal fiber-based oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing,” Laser Phys. Lett. 6, 44-48 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Other (1)

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, “Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications, Systems and Technologies (Optical Society of America, 2005), paper CThG1.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Reflectivity spectrum of a 2.8 mm long CFBG with a 170 nm / cm chirp rate and 50 % reflectivity.

Fig. 2
Fig. 2

Yb-doped fiber laser with self-starting soliton pulse mode locking provided by a SESAM and a CFBG.

Fig. 3
Fig. 3

(a) Spectra width and (b) pulse duration versus cavity length as observed at different outputs.

Fig. 4
Fig. 4

(a) Pulse variation with fiber pigtail length and corresponding time–bandwidth product at output 2, (b) autocor relation of 126 fs transform-limited pulses and optical spectrum (inset) for the optimal length of the compressing fiber corresponding to complete pulse dechirping.

Fig. 5
Fig. 5

Laser setup with a CFBG at the output for pulse compression.

Fig. 6
Fig. 6

(a) Pulse width and corresponding time–bandwidth product versus pigtail length after reflection from CFBG II, (b) autocorrelation and spectrum (inset) of 174 fs pulses obtained at the end of the fiber lead with optimal length.

Fig. 7
Fig. 7

SEM image of the SCF. Cladding diameter is 100 μm .

Fig. 8
Fig. 8

System with an SCF compressor at the output.

Fig. 9
Fig. 9

Autocorrelation and spectrum (inset) of 148 fs pulses after compression by an SCF.

Metrics